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20.1. Fundamental Wave and Harmonics

Upto this stage, while dealing with alternating voltages and currents, it has been assumed that
they have sinusoidal waveform or shape. Such a waveform is an ideal one and much sought after
by the manufacturers and designers of alternators. But it is nearly impossible to realize such a
waveform in practice. All the alternating waveforms deviate, to a greater or lesser degree, from this
ideal sinusoidal shape. Such waveforms are referred to as non-sinusoidal or distorted or complex
waveforms.

Fig. 20.1 Fig. 20.2

Complex waveforms are produced due to the superposition of sinusoidal waves of different
frequencies. Such waves occur in speech, music, TV, rectifier outputs and many other applications
of electronics. On analysis, it is found that a complex wave essentially consists of

(a) a fundamental wave – it has the lowest frequency, say ‘f’
(b) a number of other sinusoidal waves whose frequencies are an integral multiple of the

fundamental or basic frequency like 2f, 3f and 4f etc.
The fundamental and its higher multiples form a harmonic series.
As shown in Fig. 20.1, fundamental wave itself is called the first harmonic. The second

harmonic has frequency twice that of the fundamental, the third harmonic has frequency thrice that
of the fundamental and so on.

Waves having frequencies of 2f, 4f and 6f etc. are called even harmonics and those having
frequencies of 3f, 5f and 7f etc. are called odd harmonics. Expressing the above is angular
frequencies, we may say that successive odd harmonics have frequencies of 3 5 7ω ω ω, and  etc.
and even harmonics have frequencies of 2 4 6ω ω ω, and  etc.
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As mentioned earlier, harmonics are introduced in the output voltage of an alternator due to
many reason such as the irregularities of the flux distribution in it. Considerations of waveform and
form factor are very important in the
transmission of a. c. power but they
are of much greater importance in
radio work where the intelligibility
of a signal is critically dependent on
the faithful transmission of the
harmonic structure of sound waves.
In fact, it is only the rich harmonic
content of the consonants and lesser
at still plentiful harmonic content of
vowels which helps the ear to
distinguish a well regulated speech
from a more rhythmical succession
of musical sounds.

20.2. Different Complex Waveforms
Let us now find out graphically what

the resultant shape of a complex wave is
when we combine the fundamental with one
of its harmonics. Two cases would be
considered (i) when the fundamental and
harmonic are in phase with each other and
have equal or unequal amplitudes and
(ii) when there is some phase difference
between the two.

In Fig. 20.2 (a), the fundamental and
second harmonic, both having the same
amplitude, have been shown by the firm and
broken line respectively. The resultant
complex waveform is plotted out by
algebraically adding the individual ordinates
and is shown by thick line.

It may be noted that since the
maximum amplitude of the harmonic is
equal to the maximum amplitude of the
fundamental, the complex wave is said to
contain 100% of second harmonic.

Fig. 20.3  Fig. 20.4
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The complex wave of Fig. 20.2 (b) is made up of the fundamental and 4th harmonic, that of
Fig. 20.2 (c) consists of the fundamental and 3rd harmonic whereas that shown in Fig. 20.2 (d) is
made up of the fundamental and 5th harmonic. Obviously, in all there cases, there is no phase
difference between the fundamental and the harmonic.

Fig. 20.2 (a) and (c) have been reconstructed as Fig. 20.3 (a) and (b) respectively with the
only difference that in this case, the amplitude of harmonic is half that of the fundamental i.e. the
harmonic content is 50%.

The effect of phase difference between the fundamental and the harmonic on the shape of the
resultant complex wave has been illustrated in Fig. 20.4.

Fig. 20.4 (a) shows the fundamental and second harmonic with phase difference of π / 2  and
Fig. 20.4 (b) shows the same with a phase difference of π . In Fig. 20.4 (c) and (d) are shown the
fundamental and third harmonic with a phase difference of π / 2  and π  respectively. In all these
figures, the amplitude of the harmonic has been taken equal to half that of the fundamental.

A careful examination of the above figures leads us to the following conclusions :
1. With odd harmonics, the positive and negative halves of the complex wave are symmetrical

whatever the phase difference between the fundamental and the harmonic. In other words, the first
and third quarters (i.e. ω t  from 0 to π / 2  and ω t  from 3 2π / ) and the second and fourth
quarters (i.e. ω t  from π / 2  to π  and ω t  from 3 2π /  to 2π ) are respectively similar.

2. (i) When even harmonics are present and their phase difference with the fundamental is 0
or π , then the first and fourth quarters of the complex wave are of the same phase but inverted and
the same holds good for the second and third quarters.

(ii) When even harmonics are present and their phase difference with the fundamental is π / 2

or 3 2π / , then there is no symmetry as shown in Fig. 20 (a).
3. It may also be noted that the resultant displacement of the complex wave (whether

containing odd or even harmonics) is zero at ω t = 0  only when the phase difference between the
fundamental and the harmonics is either 0 to π .

The above conclusions are of great  help in analysing a complex waveform into its harmonic
constituents because a visual inspection of the complex wave enables us to rule out the presence
of certain harmonics. For example, if the positive and negative half-cycles of a complex wave are
symmetrical (i.e. the wave is symmetrical about ωt = 0 ), then we need not look for even
harmonics. In some cases, we may be able to forecast the types of harmonics to be expected from
their mode of production. For example, in alternators which are symmetrically designed, we should
expect odd harmonics only.

20.3. General Equation of a Complex Wave
Consider a complex wave which is built up of the fundamental and a few harmonics, each of

which has its own peak value of phase angle. The fundamental may be represented by

e E tm1 1 1= +sin ( )ω Ψ

the second harmonic by e E tm2 2 22= +sin ( )ω Ψ

the third harmonic by e E tm3 3 33= +sin ( )ω Ψ  and so on.
The equation for the instantaneous value of the complex wave is given by

e = e1 + e2 + .... en = E1m sin ( )ω t + Ψ1  × E2m sin ( )2 2ω t + Ψ  + .... + Inm  sin ( )n t nω + Ψ
when E1m, E2m and Enm etc. denote the maximum values or the amplitudes of the fundamental,
second harmonic and nth harmonic etc. and Ψ Ψ Ψ1 2, and n

 represent the phase differences with
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respect to the complex wave* (i.e. angle between the zero value of complex wave and the
corresponding zero value of the harmonic).

The number of terms in the series depends on the shape of the complex wave. In relatively
simple waves, the number of terms in the series would be less, in others, more.

Similarly, the instantaneous value of the complex wave is given by

i I t I t I n tm m nm n= + + + + + +1 1 2 22sin( ) sin( ) ..... sin( )ω φ ω φ ω φ

Obviously ( )Ψ1 1− φ  is the phase difference between the harmonic voltage and current for the
fundamental, ( )Ψ2 2− φ  for the second harmonic and ( )Ψ Φn − 2  for the nth harmonic.

20.4. R.M.S. Value of a Complex Wave
Let the equation of the given complex current wave be

1 1 2 2sin ( ) sin(2 ) .... sin( )m m nm ni I t I t I n t            

Its r.m.s. value is given by I i= average value of  over whole cycle2

Now i I t I t I n tm m nm n
2

1 1 2 1
22= + + + + +[ sin ( ) sin ( ) .... sin ( )]ω φ ω φ ω φ

   = + + + + +I t I t I n tm m nm n1
2 2

1 2
2 2

2
2 2 22sin ( ) sin ( ) ... sin ( )]ω φ ω φ ω φ

+ + + + + + +2 2 21 2 1 2 1 3 1 2I I t t I I t tm m m msin ( )sin ( ) sin ( )sin ( ) ....ω φ ω φ ω ωΦ Φ
The right-hand side of the above equation consists of two types of terms

(i) harmonic self-products, the general expression for which is Ipm
2 sin2 ( )p t pω φ+  for the

pth harmonic and
(ii) the products of different harmonics of the general form 2IpmIqm sin ( )p t nω φ+  sin

( )q t qω φ+
The average value of i2 is the sum of the average values of these individual terms in the above

equation. Let us now find the average value of the general term Ipm
2 sin2 ( )p t pω φ+  over a whole

cycle.

Average value = 
22 22 2 2

0 0

1 sin ( ) ( ) sin ( )
2
pm

pm p p
I

I p t d t p d
  

         
    

    = 
2 22 22

00

1 cos2( )
sin ( )

2 2 2
pm p pm

p
I p I

d p
        

              

    = 
I Ipm pm

2 2

4
2

2π
π× =

From this result, we can generalize that

Average value of I t
I

m
m

1
2 2

1
1

2

2
sin ( )ω φ+ =

Average value of I t
I

m
m

2
2 2

2
2

2

2
2

sin ( )ω φ+ =

* We could also express these phase angles with respect to the fundamentals wave instead of the complex
wave.
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Average value of I n t
I

nm n
nm2 2

2

2
sin ( )ω φ+ =  and so on.

Now, the average value of the product terms is
2

0

1
sin( )sin ( ) ( )

2 pm qm p qI I p t q t d t
 

        
  

2

0
sin ( )sin ( ) 0

5
pm qm

p q
I I

p q d
 

         
  

∴ Average value of i
I I Im m nm2 1

2
2

2 2

2 2 2
= + + +....

 ∴ r.m.s. value, I = 
2 2 2

2 1 2average value of .....
2 2 2
m m nmI I I

i    

... (i)

      = + + +0 707 1
2

2
2 2. ....I I Im m nm

Equation (i) above may also be put in the form

I = 
2 2 2

2 2 21 2
1 2..... .....

2 2 2
m m nm

n
I I I

I I I
      

                  

where I1 = I m1 2/ – r.m.s. value of fundamental

I2 = I m2 2/ – r.m.s. value of 2nd harmonic

In = Inm / 2 – r.m.s. value of nth harmonic
Similarly, the r.m.s. value of a complex voltage wave is

E = 0 707 1
2

2
2 2

1
2

2
2 2. ..... ...E E E E E Em m nm n+ + = + +

Hence, the rule is that the r.m.s. value of the complex current (or voltage) wave is given
by the square-root of the sum of the squares of the r.m.s. values of its individual components.

Note. If complex current wave contains a d.c. component of constant value ID then its equation is
given by

  i I I t I t I n tD m m nm n= + + + + + +1 1 2 22sin( ) sin( ) ... sin( )ω φ ω φ ω φ

r.m.s. value, 2 2 2 2 22 2 2
1 2 1 2( / 2) ( / 2) .....( / 2) ....D m m nm D nI I I I I I I I I       

20.5. Form Factor of a Complex Wave

In general, it may be defined as k f = R.M.S.  value

average value
A general expression for form factor in some simple cases may be found as under :
(i) Sine Series. Suppose the equation of a complex voltage wave is

v = V t V t V tm m m1 3 53 5sin sin sinω ω ω± ±
  = V V Vm m m1 3 53 5sin sin sinθ θ θ± ±   where   ω π= 2 / .T

Obviously, zeros occurs at t = 0 or at θ = °0  and θ = ° =180 2or t T / .
Mean value over half-cycle is

0

1
avV vd
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1 3 5

1 3 5
0 0 0

1 2sin . sin 3 . sin 5 .
1 3 5
m m m

m m m
V V V

V d V d V d
                                

As found in Art. 20.4,

V V V V V V Vm m m= + + = + +( ) ( )/ /
1
2

3
2

5
2 1 2

1
2

3
2

5
2 1 21

2

∴  
2 2 2 1/ 2

1 3 5

3 5
1

(1/ 2)( )
2

3 5

m m m
f

m m
m

V V V
k

V V
V

  
 

               
(ii) Cosine Series. Consider the following cosine series :

v V t V t V tm m m= ± ±1 3 53 5cos cos cosω ω ω

= V V Vm m m1 3 53 5cos cos cosθ θ θ± ±
Obviously, in this case, zeros occur at θ π= ± / 2  or 90°. Moreover, positive and negative

half-cycles are symmetrical.

∴
/ 2

3 5
1 3 5 1

/ 2

1 2( cos cos 3 cos5 )
3 5

m m
av m m m m

V V
V V V V d V

 

  

                   
∴

2 2 2 1/ 2
1 3 5

3 5
1

(1/ 2)( )
2

3 5

m m m
f

m m
m

V V V
k

V V
V

  
 

               
Example 20.1. A voltage given by v = 50 + 24 sin ωt–20 sin 2ωt  is applied across the

circuit shown in Fig. 20.5. What would be the readings of the instruments if ω = 10,000 rad/s. A1
is thermoelectric ammeter, A2 a moving-coil ammeter and V an electrostatic voltmeter.

Solution. It may be noted that the
thermoelectric ammeter and the electrostatic
voltmeter record the r.m.s. values of the
current and voltage respectively. But the
moving coil ammeter records the average
values. Since the average values of the
sinusoidal waves are zero, hence the moving
coil ammeter reads the d.c. component of the
current only. The d.c. will pass only through
the inductive branch and not through the
capacitive branch.

∴     I
V

RDC
DC= = =50

250
 0.2 A

Equivalent impedance of the circuit at fundamental frequency is

1Z 1 1

1 1

( )( ) (250 50)( 50) 2,500 12,500 10 50 51 78º 42
250 (50 50) 250

L C

L C

R jX jX j j j j
R jX jX j

              
    

∴  r.m.s. fundamental current I I m1 1 2 24 51 2 0 33= = × =/ / . A

Equivalent impedance of the circuit at the second harmonic is

2Z 2 2

2 2

( )( ) (250 100)( 25) 31.5 88º 43
200 75

L C

L C

R jX jX j
R jX jX j

          
   

∴ r.m.s. value of second harmonic current

Fig. 20.5
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I I m2 2 2 20 315 2 0 449= = × =/ / . . A

r.m.s. current in the circuit is

I I I IDC= + + = + + =2
1
2

2
2 2 2 20 2 0 33 0 449 0 593. . . . A

Hence, the reading of the thermoelectric ammeter is 0.593 A

The voltmeter reading V = + + =50 24 2 20 22 2 2( / ) ( / )  54.66
Example 20.2. Draw one complete cycle of the following wave

i = 100 sin ωt + 40 sin 5 ωt
Determine the average value, the r.m.s. value and form factor of the wave.

(Elect. Engineering, Osmania Univ.)

Solution. 2 52 2 100 40
1 5 1 5

m m
av

I I
I                     68.7 A

I
I Im m= + = + =1

2
5

2
2 2 1 2

2 2

1

2
100 40( ) /  76.2 A

Form factor = = =I

Iav

76 2

68 7

.

.  1.109

20.6. Power Supplied by a Complex Wave
Let the complex voltage be represented by the equation

e E t E t E n tm m nm= + +1 2 2sin sin ..... sinω ω ω
be applied to a circuit. Let the equation of the resultant current wave be

i I t I t I n tm m nm n= + + + + +1 1 2 22sin( ) sin( ) ...... sin( )ω φ ω φ ω φ
The instantaneous value of the power in the circuit is p = ei watt
For obtaining the value of this product, we will have to multiply every term of the voltage

wave, in turn, by every term in the current wave. The average power supplied during a cycle would
be equal to the sum of the average values over one cycle of each individual product term. However,
as proved in Art. 20.4 earlier, the average value of all product terms involving harmonics of
different frequencies will be zero over one cycle, so that we need consider only the products of
current and voltage harmonics of the same frequency.

Let us consider a general term of this nature i.e. Enm sin n tω × Inm sin ( )n t nω φ−  and find
its average value over one cycle of the fundamental.

Average value of power 
2

0

1
sin sin ( ) ( )

2 nm nm nE I n t n t d t
 

      
  

    
2

0
sin sin( )

2
nm nm

n
E I

n n d
 

      
  

     
2

0

cos cos(2 )
2 2

nm nm n nE I n
d

      
  

  

     = = ⋅ ⋅ =
E I E I

E Inm nm nm nm
n n n n

cos
cos cos

φ
φ φ

2 2 2
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where En and In are the r.m.s. values of the voltage and current respectively. Hence, total average
power supplied by a complex wave is the sum of the average power supplied by each harmonic
component acting independently.

∴  Total power is P E I E I E In n n= + +1 1 1 2 2 2cos cos ..... cosφ φ φ
The overall power factor is given by

pf.* 1 1 1 2 2 2cos cos ....total watts
total voltamperes

E I E I
E I

  
  

 
  

when   E = r.m.s. value of the complex voltage wave
   I = r.m.s. value of the complex current wave

Example 20.3. A single-phase voltage source ‘e’ is given by

  e 141 sin t 42.3sin t 28.8sin5 t= + +ω ω ω3

The corresponding current in the load circuit is given by

   i t t t= + + − + −16 5 54 5 8 43 3 38 4 65 5 34 3. sin( . º ) . sin( º ) . sin( . º )ω ω ω
Find the power supplied by the source.

(Electrical Circuits, Nagpur Univ. 1991)
Solution. In problems  of such type, it is best to deal with each harmonic separately
Power at fundamental

          = E I
E I E Im m m m

1 1 1
1 1

1
1 1

1
2 2 2

141 16 5

2
54 5 675 5cos cos cos

.
cos . º .φ φ φ= ⋅ = = × = W

Power at 3rd harmonic 3 3
3

42.3 8.43cos cos38º 140.5W
2 2

m mE I ×= φ = =

Power at 5th harmonic = × =28 8 4 65

2
34 3 55 5

. .
cos . º . W

Total power supplied = 675.5 + 140.5 + 55.5 = 871.5 W
Example 20.4. A complex voltage is given by e = 60 sin ωt  + 24 sin (3 ωt  + ω /6) + 12

sin (5 ω t + π /3) is applied across a certain circuit and the resulting current is given by
i 0.6 sin( t 2 / 10) 0.12sin( t 2 / 24) 0.1sin(5 3 / 4)= − + − + −ω π ω π π π

Find (i) r.m.s value of current and voltage (ii) total power supplied and
(iii) the overall power factor.
Solution. In such problems where harmonics are involved, it is best to deal with each

harmonic separately.

Power at fundamental = E I
E Im m

1 1 1
1 1

12

60 0 6

2
36 14 56cos cos

.
cos º .φ φ= = × × = W

Power at 3rd harmonic = E Im m3 3

2
45

24 012

2
0 707 102cos º

.
. .= × × = W

Power at 5th harmonic = E Im m5 5

2
75

12 01

2
0 2588 016cos º

.
. .= × × = W

* When harmonics are present, it is obvious that the overall p.f. of the circuit cannot be stated lagging or
leading. It is simply the ratio of power in watts of voltamperes.
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(i) R.M.S. current   I  = 
2 2 2

2 2 2 1 3 5
1 3 5 2 2 2

m m mI I I
I I I

      
                 

 = 
0 6

2

0 12

2

0 1

2

2 2 2. . .+ +  = 0.438 A

R.M.S. volts, E = + +
60

2

24

2

12

2

2 2 2

 = 46.5 V

(ii) Total power = 14.56 + 1.02 + 0.16 = 15.74 W

(iii) Overall p.f. = =
×

watts

voltamperes

15 74

46 5 0 438

.

. .
 = 0.773

20.7. Harmonics in Single-phase A.C. Circuits
If an alternating voltage, containing various harmonics, is applied to a single-phase circuit

containing linear circuit elements, then the current so produced also contains harmonics. Each
harmonic voltage will produce its own current independent of others. By the principle of
superposition, the combined current can be found. We will now consider some of the well-known
elements like pure resistance, pure inductance and pure capacitance and then various combinations
of these. In each case, we will assume that the applied complex voltage is represented by

e E t E t E n tm m nm= + + +1 2 2sin sin ..... sinω ω ω
(a) Pure Resistance
Let the circuit have a resistance of R which is independent of frequency.
The instantaneous current i1 due to fundamental voltage is

i
E t

R
m

1
1=

sinω

Similarly, i
E t

R
m

2
2 2

=
sin ω

for 2nd harmonic

and
sinnm

n
E n t

i
R

 
 ... for nth harmonic

total current i i i in= + + +1 2 ....

 = + + +
E t

R

E t

R

E n t

R
m m nm1 2 2sin sin

...
sinω ω ω

 = + + +I t I t I n tm m nm1 2 2sin sin ..... sinω ω ω
It shows that

(i) the waveform of the resulting current is similar to that of the applied voltage i.e. the
two waves are identical.

(ii) the percentage of harmonic content in the current wave is the same as in the applied
voltage.

(b) Pure Inductance
Let the inductance of the circuit be L henry whose reactance varies directly as the frequency

of the applied voltage. Its reactance for the fundamental would be X1 = ω L ;  for the second
harmonic, X2 = 2ω L,  for the third harmonic, X3 = 2ω L  and for the nth harmonic Xn = n Lω .
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However, for every harmonic term, the current will lag behind the voltage by 90°.

Current due to fundamental, i
E

L
tm

1
1 2= −

ω
ω πsin( / )

Current due to 2nd harmonic,  i
E

L
tm

2
2

2
2 2= −

ω
ω πsin( / )

Current due to 3rd harmonic, i
E

L
tm

3
3

3
3 2= −

ω
ω πsin ( / )

Current due to nth harmonic, i
E

n L
n tn

nm= −
ω

ω πsin( / )2

∴  Total current i i i in= + +1 2 .....

1 2sin( / 2) sin (2 / 2) .... sin( / 2)
2

m m nmE E E
t t n t

L L n L
      

   
       

It can be seen from the above equation that
(i) the waveform of the current differs from that of the applied voltage.

(ii) for the nth harmonic, the percentage harmonic content in the current-wave is 1/n of the
corresponding harmonic content in the voltage wave. It means that in an inductive
circuit, the current waveform shows less distortion that the voltage waveform. In this
case, current more nearly approaches a sine wave than it does in a circuit containing
resistance.

(c) Pure Capacitance
In this case,

X
C1

1=
ω – for fundamental ; X

C2
1

2
=

ω
– for 2nd harmonic

X
C3

1

3
=

ω – for 3rd harmonic ; X
n Cn = 1

ω
– for nth harmonic

i
E

C
t CE tm

n1
1

11
2 2= + = +

/
sin( / ) sin ( / )

ω
ω π ω ω π

i
E

C
t CE tm

m2
2

21 2
2 2 2 2 2= + = +

/
sin( / ) sin ( / )

ω
ω π ω ω π

sin( / 2) sin ( / 2)
1/

nm
n nm

Ei n t n CE n t
n C

= ω + π = ω ω + π
ω

For every harmonic term, the current will lead the voltage by 90°.
Now i = i1 + i2 + ...... + in

    = + + + + + +ω ω π ω ω π ω ω πC E t C E t n CE n tm m nm1 22 2 2 2 2sin ( / ) sin ( / ) ... sin( / )

This equation shows that
(i) the current and voltage waveforms are dissimilar.

(ii) percentage harmonic content of the current is larger than that of the applied voltage
wave. For example, for nth harmonic, it would be n time larger.

(iii) as a result, the current wave is more distorted than the voltage wave.
(iv) effect of capacitor on distortion is just the reverse of that of inductance.

Capacitor

The amount of charge the device can
store for a given voltage difference is

called the capacitance
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Example 20.5. A complex wave of r.m.s. value 240 V has 20% 3rd harmonic content, 5% 5th
harmonic content and 2% 7th harmonic content. Find the r.m.s. value of the fundamental and of
each harmonic. (Elect. Circuits, Gujarat Univ.)

Solution. Let V1, V3, V5 and V7 be the r.m.s. values of the fundamental and harmonic voltages.
Then

V3 = 0.2 V1 ;  V5 = 0.05 V1 and V7 = 0.02 V1

240 = (V1
2 + V3

2 + V5
2 + V7

2)1/2

∴ 240 = [V1
2 + (0.2 V1)2 + (0.05 V1)2 + (0.02 V1)2]1/2

∴ V1 = 235 V ; V3 = 0.2 × 235 = 47 V
V5 = 0.05 × 235 = 11.75 V ; V7 = 0.02 × 235 = 4.7 V

Example 20.6. Derive an expression for the power, power factor and r.m.s. value for a
complex wave.

A voltage e = 250 sin ωt + 50  sin ( / )3 3ω πt +  + 2 sin ( / )ω πt + 5 6  is applied to a series
circuit of resistance 20 Ω  and inductance 0.05 H. Derive (a) an expression for the current
(b) the r.m.s. value of the current and for the voltage (c) the total power supplied and (d) the
power factor. Take ω = 314 rad/s. (Electrical Circuits, Nagpur Univ. 1991)

Solution. For Fundamental

X L j1 1314 0 05 15 7 20 15 7 25 4 381= = × = = + = ∠ω . . ; . . . ºΩ ΩZ

For Third Harmonic

X L j3 33 3 15 7 471 20 471 512 67= = × = = + = ∠ω . . ; . . ºΩ ΩZ

For Fifth Harmonic

X L j5 55 5 15 7 78 5 20 78 5 81 75 7= = × = = + = ∠ω . . ; . . ºΩ ΩZ

(a) Expression for the current is

i t t t= − + + − + + −250

25 4
381

50

512
3 60 67

20

81
5 150 75 7

.
sin( . º )

.
sin ( º º ) sin ( º . º )ω ω ω

∴ i t t t= − + − + +9 84 381 0 9 3 7 0 25 5 74 3. sin( . º ) . sin ( º ) . sin( . º )ω ω ω

(b) R.M.S. current I
I I Im m m= + +1

2
3

2
5

2

2 2 2

                 I 2
2 2 29 84

2

0 9

2

0 25

2
48 92= + + =. . .

.

∴                   I = =48 92.  6.99 A

R.M.S. voltage   V = + + =
250

2

50

2

20

2

2 2 2

 180.8 V

(c)  Total power    = I2R = 48.92 × 20 = 978 W

(d)   Power factor 
Watts 978

VI 180.8 6.99
   

 
 0.773



Harmonics 765

Example 20.7. An r.m.s. current of 5 A, which has a third harmonic content, is passed
through a coil having a resistance of 1 Ω  and an inductance of 10 mH. The r.m.s. voltage across
the coil is 20 V. Calculate the magnitude of the fundamental and harmonic components of current
if the fundamental frequency is 300/2 π  Hz. Also, find the power dissipated.

Solution. (i) Fundamental Frequency

ω = 300  rad/s ; XL = 300 × 10–2 = 3 Ω ∴ Z1 = 1 + j 3 = 3.16 ∠  71.6º ohm

If V1 is the r.m.s. value of the fundamental voltage across the coil, then
V1 = I1Z1 = 3.16 I1

(ii) Third Harmonic

X3 = 3 × 3 = 9 Ω  ; Z3 = 1 + j 9 = 9.05 ∠ 83.7º ohm ; V3 = I3Z3 = 9.05 I3
Since r.m.s. current of the complex wave is 5 A and r.m.s. voltage drop 20 V

5 201
2

3
2

1
2

3
2= + = +I I V Vand

Substituting the values of V1 and V3, we get, 20 = [(3.16 I1)2 + (9.05 I3)2]1/2

Solving for I1 and I3, we have I1 = 4.8 A and I3 = 1.44 A
Power dissipated = I2R = 52 × 1 = 25 W
Example 20.8.  An e.m.f. represented by the equation e = 150 sin 314 t + 50 sin 942 t  is

applied to a capacitor having a capacitance 20 μF. What is the r.m.s. value of the charging
current ?

Solution. For Fundamental
6

1 1 1 11/ 10 / 20 314 159 ; I E / 150 /159 0.943 AC m m CX C X         

For Third Harmonic
XC1 = 1/3 ωC = 159/3 = 53 Ω      ∴   I3m = E3m/XC1 = 50/53 = 0.943 A
r.m.s. value of charging current,

I
I Im m= + = +1

2
3

2 2 2

2 2

0 943

2

0 943

2

. .

or I = 0.943 A
Example 20.9. The voltage given by v = 100 cos 314 t + 50 sin (1570t – 30º) is applied to

a circuit consisting of a 10 Ω  resistance, a 0.02 H inductance and a 50 μF capacitor. Determine
the instantaneous current through the circuit. Also find the r.m.s. value of the voltage and
current.

Solution. For Fundamental

ω  = 314 rad/s;  XL = 314 × 0.02 = 6.28 Ω
XC = 106/314 × 50 = 63.8 Ω  ; X = XL – XC = 6.28 – 63.8 = – 57.32 Ω

Z = 10 57 322 2+ −( . )  = 58.3 Ω  ; I1m = 100/58.3 = 1.71 A

φ1  = tan–1 (– 57.32/10) = – 80.2º (lead) ; i1 = 1.71 cos (314t + 80.2º)
For Fifth Harmonic

Inductive reactance = 5 XL = 5 × 6.28 = 31.4 Ω

Capacitive reactance = XC/5 = 63.8/5 = 12.76 Ω
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Net reactance = 31.4 – 12.76 = 18.64 Ω

Z = + =10 18 64 2122 2. . Ω

I5m = 50/21.2 = 2.36 A;  φ5  = tan–1 (18.64/10) = 61.8º (lag)

i5 = 2.36 sin (1570 t – 30º – 61.8º) = 2.36 sin (1570t – 91.8º)
Hence, total instantaneous current is

i = i1 + i5 = 1.71 cos (314 t + 80.2º) + 2.36 sin (1570t – 91.8º)

 R.M.S. voltage = 
100

2

50

5

2 2

+ = 79.2 V

R.M.S. current = 
171

2

2 36

2

2 2. .
+ = 2.06 A

Example 20.10. A 6.36 μF capacitor is connected in parallel with a resistance of 500 Ω
and the combination is connected in series with a 500- Ω  resistor. The whole circuit is connected
across an a.c. voltage given by e = 300 sin ωt  + 100 sin ( / ).3 6ω πt +

If ω  = 314 rad/s, find
  (i) power dissipated in the circuit
 (ii) an expression for the voltage across the

series resistor
(iii) the percentage harmonic content

in the resultant current.
Solution. For Fundamental

X
CC1

61 10

314 6 36
500= =

×
=

ω .
Ω

The impedance of the whole series-
parallel circuit is given by

1Z
500( 500)500 750 250 791 18.4º
500 500

j j
j

 
       

 

For Third Harmonic

X CC3 1 3 500 3 167= = =/ /ω Ω

∴   3Z
500( 167)500 550 150 570 15.3º
500 167

j j
j

        
 

∴ i t t= + + +300

791
18 4

100

570
3 45 3sin ( . º ) sin ( . º )ω ω

 = + + +0 397 18 4 0175 3 45 3. sin ( . º ) . sin ( . )ω ωt t

(i) Power dissipated = 
E I E Im m m m1 1

1
3 3

32 2
cos cosφ φ+

Fig. 20.6
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= × × + × =300 0 379

2
18 4

100 0175

2
15 3

.
cos . º

.
cos .  62.4 W

(ii) The voltage drop across the series resistor would be

E iR t tR = = + + +500 0 379 18 4 0175 3 45 3[ . sin ( . º ) . sin( . º )]ω ω

eR = 189.5 sin ( 18.4º ) 87.5sin(3 45.3º )ω ωt t+ + +
(iii) The percentage harmonic content of the current is = 87.5/189.5 × 100 = 46.2%
Example 20.11. An alternating voltage of v = 1.0 sin 500t + 0.5 sin 1500t is applied across

a capacitor which can be represented by a capacitance of 0.5 μF shunted by a resistance of 4,000
Ω . Determine

  (i) the r.m.s. value of the current   (ii) the r.m.s. value of the applied voltage
(iii) the p.f. of the circuit. (Circuit Theory and Components, Madras Univ.)
Solution. For Fundamental [Fig. 20.7 (a)]

 V1 = 1.0/ 2  = 0.707 V
Let, V1 = (0.707 + j0)
Capacitive reactance

                = jXC1 = – j 106/500 × 0.5
               = j 4000 Ω ; R = 4,000 Ω

∴ Iab1  = 0.707/4,000 = 0.177 mA
     Icd1 = 0.707/–j4,000 = j0.177 m/A
∴    I1 = 0.177 + j0.177

                = 0.25 ∠ 45º mA
Hence, I1 lead the fundamental voltage by 45º.
Pab1 = 0.707 × 0.177 = 0.125 mW ; Pcd1 = 0
For Third Harmonic [Fig. 20.7 (b)]

V3 = 0.5/ 2  = 0.3535 ∠ 0º ; R = 4,000 Ω  : XC3 = –j4,000/3 Ω

Iab3 = 0.3535/4000 = 0.0884 ∠ 0º mA ; Icd3 = 0.3535/–j(4,000/3) = j 0.265 mA
I3 = 0.0884 + j0.265 = 0.28 ∠ 71.6º mA
Pab3 = 0.3535 × 0.0884 = 0.0313 mW ; Pcd3 = 0

  (i)  R.M.S. current = I I1
2

3
2 2 20 25 0 28+ = + =. .  0.374 mA

 (ii)  R.M.S. voltage = ( / ) ( . / )1 2 0 5 22 2+ = 0.79 V
(iii)  Power factor = watts/voltampere
Wattage = (0.125 + 0.0313) × 10–3 = 0.1563 × 10–3 W
Volt-amperes = 0.79 × 0.374 = 0.295 ; p.f. = 0.1563 × 10–3/0.295 = 0.0005

20.8. Selective Resonance due to Harmonics

When a complex voltage is applied across a circuit containing both inductance and
capacitance, it may happen that the circuit resonates at one of the harmonic frequencies of the
applied voltage. This phenomenon is known as selective resonance.

If it is a series circuit, then large currents would be produced at resonance, even though the
applied voltage due to this harmonic may be small. Consequently, it would result in large harmonic
voltage appearing across both the capacitor and the inductance.

Fig. 20.7
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If it is a parallel circuit, then at resonant frequency, the resultant current drawn from the
supply would be minimum.

It is because of the possibility of such selective resonance happening that every effort is made
to eliminate harmonics in supply voltage.

However, the phenomenon of selective resonance has been usefully employed in some wave
analyses for determining the harmonic content of alternating waveforms. For this purpose, a
variable inductance, a variable capacitor, a variable non-inductive resistor and a fixed non-
inductive resistance or shunt for an oscillograph are connected in series and connected to show the
wave-form of the voltage across the fixed non-inductive resistance. The values of inductance and
capacitance are adjusted successively to give resonance for the first, third, first and seventh
harmonics and a record of the waveform is obtained by the oscillograph. A quick inspection of the
shape of the waveform helps to detect the presence or absence of a particular harmonic.

Example 20.12. An e.m.f. e = 200 sin ωt  + 40 sin 3 ωt  + 10 sin 5 ωt  is impressed on a
circuit comprising of a resistance of 10 Ω,  a variable inductor and a capacitance of 30 μF, all
connected in series. Find the value of the inductance which will give resonance with triple
frequency component of the pressure and estimate the effective p.f. of the circuit, ω = 300  radian/
second. (Elect. Engg. I, Bombay Univ.)

Solution. For resonance at third harmonic

3 1 3ω ωL C= /     ∴   L = 1/9 ω2 C = 106/9 × 3002 × 30 = 0.041 H

Z1 = 
61010 300 0.041

300 30
j
  

        
 = 10 + j (12.3 – 111.1) = 10 – j98.8 = 99.3 ∠ –84.2º

3
110 3 10 (36.9 37.0) 10 0º

3
j L j

C
  

              
Z

5
1

Z 10 5 10 (61.5 22.2) 10 39.3 40.56 75.7º
5

j L j j
L

                  
I1m = 200/99.3 = 2.015 A ; I3m = 40/10 = 4A ; I5m = 10/40.56 = 0.246 A

 I = + + = =
2 015

2

4

2

0 246

2
10 06 3172

2 2 2. .
. . A

V = + +
200

2

40

2

10

2

2 2 2

 = 144.5 V ; Power = I2R = 10.06 × 10 = 100.6 W

Volt-amperes VI = 144.5 × 3.172 = 458 VA ; Power factor = 100.6/458 = 0.22

Example 20.13. A coil having R = 100 Ω  and L = 0.1 H is connected in series with a
capacitor across a supply, the voltage of which is given by e = 200 sin 314t + 5 sin 3454t. What
capacitance would be required to produce resonance with the 11th harmonic. Find (a) the
equation of the current and (b) the r.m.s. value of the current, if this capacitance is in circuit.

Solution. For series resonance, XL = XC

Since resonance is required for 11th harmonic whose frequency is 3454 rad/s, hence

3454
1

3454

1

3454 012
L

C
C= =

×
;

.
 farad = 0.838  μF

(a) For Fundamental
Inductive reactance = ω L = × =314 01 314. . Ω

Capacitive reactance = 1 10 0 836 314 37966/ / .ω C = × = Ω
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∴ Net reactance = 3796 – 31.4 = 3765 Ω ;  Resistance = 100 Ω

∴ Z1 = 100 3765 37672 2+ = Ω ; tan φ1  = 3765/100 = 37.65

∴   φ1 88 28= ′º  (leading) = 1.546 radian

NowE1m = 200 V ; Z1 = 3767 Ω     ∴  I1m = 200/3767 = 0.0531 A
Eleventh Harmonic
New reactance = 0; Impedance Z11 = 100 Ω

∴  Current I11m = 5/100 = 0.05 A ; φ11  = 0 ... at resonance
Hence, the equation of the current is

i t t= + + +200

3767
314 1546

5

100
3454 0(sin . ) sin ( )

i = 0.0531 sin (314 t + 1.546) + 0.05 sin 3454 t

(b) I = + =( . ) / ( . ) /0 0531 2 0 05 22 2  0.052 A

20.9. Effect of Harmonics on Measurement of Inductance and Capacitance
Generally, with the help of ammeter and voltmeter readings, the value of impedance,

inductance and capacitance of a circuit can be calculated. But while dealing with complex voltages,
the use of instrument readings does not, in general, give correct values of inductance and
capacitance except in the case of a circuit containing only pure resistance. It is so because, in the
case of resistance, the voltage and current waveforms are similar and hence the values of r.m.s.
volts and r.m.s amperes (as read by the voltmeter and ammeter respectively) would be the same
whether they ware sinusoidal or non-sinusoidal (i.e. complex).

(i) Effect on Inductances
Let L be the inductance of a circuit and E and I the r.m.s. values of the applied voltage and

current as read by the instruments connected in the circuit. For a complex voltage

          E E E Em n m= + + +0 707 1
2

3
2

5
2. ( .....)

Hence          I = 
2 2

1 3 50.707 .....
3 5

m m mE E E
L L L

                                

 
2 2 2

1 3 5
0.707 1 1 ...

9 25m m mE E E
L

           

∴          
2 2 2

1 3 5
0.707 1 1 .....

9 25m m mL E E E
I

           
For calculating the value of L from the above expression, it is necessary to known the

absolute value of the amplitudes of several harmonic voltages. But, in practices, it is more
convenient to deal with relative values than with absolute values. For this purpose, let us multiply
and divide the right-hand side of the above expression by E but write the E in the denominator in

its form 0.707  ( .......)E E Em m m1
2

3
2

5
2+ + +

∴ 2 2 2
1 3 5 2 2 2

1 3 5

0.707 1/ 9. 1/ 25. .....
0.707 ( ......)

m m m
m m m

EL E E E
I E E E

                       



770 Electrical Technology

or
2 2 2 2 2

1 3 5 3 1 5 1
2 2 2 2 2

3 1 5 11 3 5

1/9 1/25 .......) 1 1/9 ( / ) 1/25 ( / ) .....
1 ( / ) ( / ) .....( ....)

m m m m m m m

m m mm m m

E E E E E E EE E
L

I I E E E EE E E

              
                      

If the effect of harmonics were to be neglected, then the value of the inductance would appear
to be E / ω  I but the true or actual value is less than this. The apparent value has to be multiplied
by the quantity under the radical to get the true value of inductance when harmonics are present.

The quantity under the radical is called the correction factor i.e.
True inductance (L) = Apparent inductance ( )′L  × correction factor
(ii)  Effect on Capacitance
Let the capacitance of the circuit be C farads and E and I the instrument readings for voltage

and current. Since the instruments read r.m.s. values, hence, as before,

E E E Em m m= + + +0 707 1
2

3
2

5
2. ( ........)

Hence
22

1 3 50.707 .....
1/ 1/ 3 1/ 5

m m mE E E
I

C C C

                                 

  = + + +0 707 3 51
2

3
2

5
2. ( ) ( ) ( ) ....ω ω ωCE CE C Em m m

  = + + +0 707 9 0 251
2

3
2 2. .....ωC E E Em m sm

∴ C
I

E E Em m m

=
+ + +0 707 9 251

2
3

2
5

2. ( ....)ω

Again, we will multiply and divide the right-hand side E but in this case, we will write E in

the numerator  in its form [ . ( ....)]0 707 1
2

3
2

5
2E E Em m m+ + +

∴ 2 2 2
1 3 52 2 2

1 3 5

1 0.707 ( ......)
0.707 ( 9 25 .....)

m m m
m m m

C E E E
E E E E

  
                     

2 2 2 2 2
1 3 5 3 1 5 1

2 2 2 2 2
3 1 5 11 3 5

..... 1 ( / ) ( / ) .....1 1
1 9( / ) 25( / ) .....9 25 ......

m m m m m m m

m m m mm m m

E E E E E E E
E E E E E EE E E

        
                      
Again, if the effects of harmonics were neglected, the value of capacitance would appear to

be I / ω E but its true value is less than this. For getting the true value, this apparent value will have
to be multiplied by the quantity under the radical (which, therefore, is referred to as correction
factor).*

∴ True capacitance (C) = Apparent capacitance ( ′C ) × correction factor
Example 20.14. A current of 50-Hz containing first, third and fifth harmonics of maximum

values 100, 15 and 12 A respectively, is sent through an ammeter and an inductive coil of
negligibly small resistance. A voltmeter connected to the terminals shows 75 V. What would be the
current indicated by the ammeter and what is the exact value of the inductance of the coil in
henrys ?

* It may be noted that this correction factor is different from that in the case of pure inductance.



Harmonics 771

Solution. The r.m.s. current is

 I I I Im m m= + + = + + =0 707 0 707 100 15 12 721
2

3
2

5
2 2 2 2. . ( ) A

Hence, current indicated by the ammeter is 72 A

Now      E E E Em m m= + +0 707 1
2

3
2

5
2. ( )

Also   I
E

L
I

E

L
I

E

Lm
m

m
m

m
m

1
1

3
3

5
5

3 5
= = =

ω ω ω
; ;

∴     E I L E I L E I Lm m m m m m1 1 3 3 5 53 5= ⋅ = = ⋅ω ω ω; ;

∴       E I L I L I L L I I Im m m m m m= + + = + +0 707 3 5 0 707 9 251
2

3
2

5
2

1
2

3
2

5
2. ( ) ( ) ( ) .ω ω ω ω

∴     75 0 707 2 50 100 9 15 25 122 2 2= × × + × + ×. L π
∴ L = 0.0027 H

Note. Apparent inductance ′ = =
× ×

=L
E

Iω π
75

2 50 72
0 00331. H

Example 20.15. The capacitance of a 20 μF capacitor is checked by direct connection to an
alternating voltage which is supposed to be sinusoidal, an electrostatic voltmeter and a
dynamometer ammeter being used for measurement. If the voltage actually follows the law,

e = 100 sin 250 t + 20 sin (500 – φ ) + 10 sin (750 t – φ )

Calculate the value of capacitance as obtained from the direct ratio of the instrument readings.
Solution. True value,   C = 20 μF
Apparent value         ′C = value read by the instruments

Now,                      C C= ′  × correction factor.
Let us find the value of correction factor.
Here E1m = 100 ; E2m = 20 and E3m = 10

∴  Correction factor 
2 2 2 2 2 2

1 2 3
2 2 2 2 2

1 2 5

100 20 10
0.9166

100 4 20 9 104 9
m m m

m m m

E E E
E E E

        
       

              

20 0 9166= ′ ×C . ∴ ′ =C 20 0 9166/ .  = 21.82 μF.

21.10. Harmonics in Different Three-phase Systems

In tree-phase systems, harmonics may be produced in the same way as in single-phase
systems.

Hence, for all calculation they are treated in the same manner i.e. each harmonic is treated
separately. Usually, even harmonics are absent in such systems. But care must be exercised when
dealing with odd, especially, third harmonics and all multiples of 3rd harmonic (also called the
triple-n harmonics).
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(a) Expressions for Phase E.M.Fs.
Let us consider a 3-phase alternator having identical phase windings (R, Y and B) in which

harmonics are produced. The three phase e.m.fs. would be represented in their proper phase
sequence by the equation.

e E t E t E tm m mR = + + + + + +1 1 3 3 5 53 5( ) ( ) sin( ) .....ω ω ωΨ Ψ Ψ

Y 1 1 3 3 5 5
2 2 2sin sin 3 sin 5
3 3 3m m me E t E t E t

                                                

B 1 1 3 3 5 5
4 4 4sin sin 3 sin 5
3 3 3m m me E t E t E t

                                                
On simplification, these become
e E t E t E tm m mR = + + + + + +1 1 3 3 5 53 5sin( ) ( ) sin( ) .....ω ω ωΨ Ψ Ψ                        – as before

Y 1 2 3 3 5 5
2 10sin sin(3 2 ) sin 5 .....
3 3m m me E t E t E t                               

    1 1 3 3 5 5
2 4

sin sin(3 ) sin 5 .....
3 3m m mE t E t E t
                             

B 1 1 3 3 5 5
4 2

sin sin(3 ) sin 5 .....
3 3m m me E t E t E t
                             

From these expressions, it is clear that
(i) All third harmonics are equal in all phases of the circuit i.e. they are in time phase.

(ii) Fifth harmonics in the three phases have a negative phase sequence of R, B, Y because the fifth
harmonic of blue phase reaches its maximum value before that in the yellow phase.

(iii) All harmonics which are not multiples of three, have a phase displacement of 120º so that they can
be dealt with in the usual manner.

(iv) At any instant, all the e.m.fs. have the same direction which means that in the case of a Y-connected
system they are directed either away from or towards the neutral point and in the case of Δ-
connected system, they flow in the same direction.
Main points can be summarized as below :

(i) all triple-n harmonics i.e. 3rd, 9th, 15th etc. are in phase,
(ii) the 7th, 13th and 19th harmonics have positive phase rotation of R, Y, B.

(iii) the 5th, 11th and 17th harmonics have a negative phase sequence of R, B, Y.
(b) Line Voltage for a Star-connected System
In this system, the line voltages will be the difference between successive phase voltages and

hence will contain no third harmonic terms because they, being identical in each phase, will cancel

out. The fundamental will have a line voltage 3  times the phase voltage. Also, fifth harmonic has

line voltage 3  its phase voltage.
But it should be noted that in this case the r.m.s. value of the line voltage will be less than

3   times the r.m.s. value of the phase voltage due to the absence of third harmonic term from the
line voltage. It can be proved that for any line voltage.

Line value =
+ +

+ + +
3 1

2
5

2
7

2

1
2

3
2

5
2

7
2

E E E

E E E E
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where E1, E3 etc. are r.m.s. values of the phase e.m.fs.
(c) Line Voltage for a Δ -connected System
If the winding of the alternator are delta-connected, then the resultant e.m.f. acting round the

closed mesh would be the sum of the phase e.m.fs. The sum of these e.m.fs. is zero for
fundamental, 5th, 7th, 11th etc. harmonics. Since the third harmonics are in phase, there will be a
resultant third harmonic e.m.f. of three times the phase value acting round the closed mesh. It will
produce a circulating current whose value will depend on the impedance of the windings at the
third harmonic frequency. It means that the third harmonic e.m.f. would be short-circuited by the
windings with the result that there will be no third harmonic voltage across the lines. The same is
applicable to all triple-n harmonic voltages. Obviously, the line voltage will be the phase voltage
but without the triple-n terms.

Example 20.16. A 3- φ  generator has a generated e.m.f. of 230 V with 15 per cent third
harmonic and 10 per cent fifth harmonic content. Calculate

 (i) the r.m.s. value of line voltage for Y-connection.
(ii) the r.m.s. value of line voltage for Δ-connection.
Solution. Let E1, E3, E5 be the r.m.s. values of the phase e.m.fs. Then

E3 = 0.15 E1 and E5 = 0.1 E1

∴           230 015 011
2

1
2

1
2= + +E E E( . ) ( . )

E1 = 226 V      ∴   E3 = 0.15 × 226 = 34 V and E5 = 0.1 × 226=22.6 V

(i) r.m.s. value of the fundamental line voltage = 3 226 392× = V

r.m.s. value of third harmonic line voltage = 0

r.m.s. value of 5th harmonic line voltage 3 22 6× =.  39.2 V

∴ r.m.s. value of line voltage VL = + =392 39 22 2.  394 V

(ii) In Δ-connection, again the third harmonic would be absent from the line voltage

∴ r.m.s. value of line voltage VL = + =226 22 62 2. 227.5 V

(d) Circulating Current in Δ -connected Alternator
Let the three symmetrical phase e.m.fs. of the alternator be represented by the equations,

e E t E t E tR m m m= + + + + + +1 1 3 3 5 53 5sin( ) ( ) sin( ) ......ω ω ωΨ Ψ Ψ

e E t E t E tY m m m= + − + + + + + −1 1 3 3 5 52 3 3 5 4 3sin( / ) sin( ) sin( / ).....ω π ω ω πΨ Ψ Ψ

e E t E t E tB m m m= + − + + + + − +1 1 3 3 5 54 3 3 5 2 3sin( / ) sin( ) sin( / ) ....ω π ω ω πΨ Ψ Ψ

The resultant e.m.f. acting round the Δ-connected windings of the armature is the sum of
these e.m.fs. Hence it is given by e = eR + eY + eB

∴ e E t E t E tm m= + + + + + +3 3 3 9 3 153 3 9 9 15 15sin( ) sin( ) sin( ) ......ω φ ω ωΨ Ψ

If R and L represent respectively the resistance and inductance per phase of the armature
winding, then the circulating current due to the resultant e.m.f. is given by

3 3 9 9 15 15
2 2 2 2 2 2 2 2 2

3 sin(3 ) 3 sin(9 ) 3 sin(15 )
....

3 ( 9 ) 3 ( 81 ) 3 ( 225 )
m m m

i
E t E t E t
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R L R L R L

   

   

      
    

   



774 Electrical Technology

  =
+

+
+

+

+
+

+

+

E t

R L

E t

R L

E t

R L

m m m3 3

2 2 2

9 9

2 2 2

15 15

2 2 2

3

9

9

81

15

225

sin( )

( )

sin( )

( )

sin( )

( )

ω

ω

ω

ω

ω

ω

Ψ Ψ Ψ

The r.m.s. value of the current is given by

I E R L E R L E R LC m m m= + + + + + +0 707 9 81 2253
2 2 2 2

9
2 2 2 2

15
2 2 2 2. [ / ( ) / ( ) ( / ( ) ......]ω ω ω

(e) Three-phase four-wire System
In this case, there will be no third harmonic component in line voltage. For the 4-wire system,

each phase voltage (i.e. line to neutral) may contain a third harmonic component. If it is actually
present, then current will flow in the Y-connected load. In case load is balanced, the resulting third
harmonic line currents will all be in phase so that neutral wire will have to carry three times the
third harmonic line current. There will be no current in the neutral wire either at fundamental
frequency, or any harmonic frequency other than the triple-n frequency.

20.11. Harmonics in Single and 3-phase Transformers

The flux density in
transformer course is usually
maintained at a fairly high value in
order to keep the required volume
of iron to the minimum. However,
due to the non-linearity of
magnetisation curve, some third
harmonic distortion is always
produced. Also, there is usually a
small percentage of fifth
harmonic. The magnetisation
current drawn by the primary
contains mainly third harmonic
whose proportion depends on the
size of the primary applied
voltage. Hence, the flux is
sinusoidal.

In the case of three-phase
transformers, the production of
harmonics will be affected by the
method of connection and the type of construction employed.

(a) Primary Windings Δ -CONNECTED
Each primary phase can be considered as separately connected across the sinusoidal supply.
(i) The core flux will be sinusoidal which means that magnetizing current will contain 3rd

harmonic component in addition to relatively small amounts of other harmonics of higher order.
(ii) In each phase, these third harmonic currents will be in phase and so produce a circulating

current round the mesh with the result that there will be no third harmonic component in the line
current.

(b) Primary Winding Connected in 4-wire Star
Each phase of the primary can again be considered as separately connected across a

sinusoidal supply.

3-phase current transformer
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 (i) The flux in the transformer core would be sinusoidal and so would be the output voltage.
(ii) The magnetizing current will contain 3rd harmonic component. This component being in

phase in each winding will, therefore, return through the neutral wire.
(c) Primary Windings Connected 3-wire Star
Since there is no neutral wire, there will be no return path for the 3rd harmonic component

of the magnetizing current. Hence, there will exist a condition of forced magnetization so that core
flux must contain third harmonic component which is in phase in each limb of the transformer core.
Although there will be a magnetic path for these fluxes in the case of shell type
3-phase transformer, yet in the case of three-limb core type transformer, the third harmonic
component of the flux must return via the air. Because of the high reluctance magnetic path in such
transformers, the third harmonic flux is reduced to a very small value. However, if the secondary
of the transformer is delta-connected, then a third harmonic circulating current would be produced.
This current would be in accordance with Lenz’s law tend to oppose the very cause producing it
i.e. it would tend to minimize the third harmonic component of the flux.

Should the third and fifth secondary be Y-connected, then provision of an additional
Δ-connected winding, in which this current can flow, becomes necessary. This tertiary winding
additionally served the purpose of preserving magnetic equilibrium of the transformer in the case
of unbalanced loads. In this way, the output voltage from the secondary can be kept reasonably
sinusoidal.

Example 20.17. Determine whether the following two waves are of the same shape
e = 10 sin ( ω t + 30º) – 50 sin (3 ω t – 60º) + 25 sin (5 ω t + 40º)
i = 1.0 sin ( ω t – 60º) + 5 sin (3 ω t – 150º) + 2.5 cos (5 ω t – 140º)

(Principles of Elect. Engg-II Jadavpur Univ.)
Solution. Two waves possess the same waveshape
 (i) if they contain the same harmonics
 (ii) if the ratio of the corresponding harmonics to their respective fundamentals is the same
(iii) if the harmonics are similarly spaced with respect to their fundamentals.
In other words,
(a) the ratio of the magnitudes of corresponding harmonics must be constant and
(b) with fundamentals in phase, the corresponding harmonics of the two waves must be in

            phase.
The test is applied first by checking the ratio of the corresponding harmonics and then

coinciding the fundamentals by shifting one wave. If the phase angles of the corresponding
harmonics are the same, then the two waves have the same shape.

In the present case, condition (i) is fulfilled because the voltage and current waves contain the
same harmonics, i.e. third and fifth.

Secondly, the ratio of the magnitude of corresponding current and voltage harmonics is the
same i.e. 1/10.

Now, let the fundamental of the current wave be shifted ahead by 90º so that it is brought in
phase with the fundamental of the voltage wave. It may be noted that the third and fifth harmonics
of the current wave will be shifted by 3 × 90º = 270° and 5 × 90º = 450º respectively. Hence, the
current wave becomes

′ = − + + − + + − +i t t t10 60 90 5 3 150 270 2 5 5 140 450. sin ( º º ) sin( º º ) . cos( º º )ω ω ω

  = + + + + +10 30 5 3 120 2 5 5 310. sin( º ) sin( º ) . cos( º )ω ω ωt t t
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  = + − − + +10 30 5 3 60 2 5 5 40. sin( º ) sin( º ) . sin( º )ω ω ωt t t

It is seen that now the corresponding harmonics of the voltage and current waves are in phase.
Since all conditions are fulfilled, the two waves are of the same waveshape.

Tutorial Problem No. 20.1

1. A series circuit consist of a coil of inductance 0.1 H and resistance 25 Ω  and a variable
capacitor. Across this circuit is applied a voltage whose instantaneous value is given by

v t t t= + − + − =100 20 3 45 5 5 30 314sin sin ( ) sin( )ω ω ω ωwhere rad / s

Determine the value of C which will produce response at third harmonic frequency and with this
value of C, find

(a) an expression for the current in the circuit (b) the r.m.s. value of this current (c) the total power
absorbed.

[11.25μF, (a) i = 0.398 sin ( ωt + 84.3) + 0.8 sin (3 ωt + 45) + 0.485 sin (5 ωt + 106) (b) 0.633 A
(c) 10 W]

2. A voltage given by v = 200 sin 314 t + 520 sin (942 t + 45º) is applied to a circuit consisting of

a resistance of 20 Ω , and inductance of 20 mH and a capacitance of 56.3 μF all connected in series.
Calculate the r.m.s. values of the applied voltage and current. Find also the total power absorbed

by the circuit. [146 V ; 3.16 A 200 W]

3. A voltage given by v = 100 sin ωt  + 8 sin 3 ωt  is applied to a circuit which has a resistance of
1 Ω, an inductance of 0.02 H and a capacitance of 60μF. A hot-wire ammeter is connected in series with
the circuit and a hot-wire voltmeter is connected to the terminals. Calculate the ammeter and voltameter
readings and the power supplied to the circuit. [71 V ; 5.18 A ; 26.8 W]

4. A certain coil has a resistance of 20 Ω  and an inductance of 0.04 H. If the instantaneous
current flowing in it is represented by i = 5 sin 300 t + 0.8 sin 900 t amperes, derive an expression for the
instantaneous value of the voltage applied across the ends of the coil and calculate the r.m.s. value of that
voltage. [V = 117 sin (300 t + 0.541) + 33 sin (900 t + 1.06) ; 0.86 V]

5. A voltage given by the equation v t= × +2 100 2 50 2 20 2sin . sin .π π  150t is applied to the

terminals of a circuit made up of a resistance of 5 Ω , an inductance of 0.0318 H and a capacitor of 12.5
μF all in series. Calculate the effective current and the power supplied to the circuit.

[0.547 A ; 1.5 W]
6. An alternating voltage given by the expression v = 1,000 sin 314t + 100 sin 942t is applied to a

circuit having a resistance of 100 Ω and an inductance of 0.5 H. Calculate r.m.s. value of the current and
p.f. [3.81 A ; 0.535]

7. The current in a series circuit consisting of a 159 μF capacitor, a reactor with a resistance of

10 Ω  and an inductances of 0.0254 H is given by i t t= +2 8 2 3( sin sin )ω ω  amperes. Calculate the
power input and the power factor. Given ω π= 100  radian/second. [680 W ; 0.63]

8. If the terminal voltage of a circuit is 100 sin ω ω πt t+ +50 3 4sin( / )  and the current is

10 3sin( )ω πt +  +5 3sin ,ωt  calculate the power consumption. [522.6 W]
9. A single-phase load takes a current of 4 sin ( / ) . sin( / )ω π ω πt t+ + +6 15 3 3  A from source

represented by 360 sin ωt  volts. Calculate the power dissipated by the circuit and the circuit power
factor.

[623.5 W ; 0.837]
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10. An e.m.f. given by e = 100 sin 40sin ( / 6) 10sin (5 / 3)t t t          volts is applied to a

series circuit having a resistance of 100 Ω,  an inductance of 40.6 mH and a capacitor of 10 μF. Derive
an expression for the current in the circuit. Also, find the r.m.s. value of the current and the power
dissipated in the circuit. Take ω = 314 rad/second.

[0.329 A, 10.8 W]

11. A p.d. of the form ν ω ω= +400 30 3sin sint t  is applied to a rectifier having a  resistance of
50Ω  in one direction and 200 in the reverse direction. Find the average and effective values of the
current and the p.f. of the circuit.

[1.96 A, 4.1 A, 0.51]
12. A coil having R = 2 Ω and L = 0.01 H carries a current given by i = 50 + 20 sin 300 t
A moving-iron ammeter, a moving-coil voltmeter and a dynameter wattmeter, are used to indicate

current, voltage and power respectively. Determine the readings of the instruments and equation for the
p.d.

[121.1 V ; 52 A ; 5.4 kW, V = 100 + 72 sin (300 t + 0.982)]
13. Two circuits having impedances at 50 Hz of (10 + j6) Ω and (10 – j6) respectively are

connected in parallel across the terminals of an a.c. system, the waveform of which is represented by v =
100 sin ω t + 35  sin 3 10 5ω ωt t+ sin ,  the fundamental frequency being 50 Hz. Determine the ratio of
the readings of two ammeters, of negligible resistance, connected one in each circuit.

[6.35 ; 6.72]
14. Explain what is meant by harmonic resonance in a.c. circuits.

A current having an instantaneous value of 2 (sin sin )ω ωt t+ 3  amperes is passed through a
circuit which consists of a coil of resistance R and inductance L in series with a capacitor C. Derive an
expression for the value of ω  at which the r.m.s. circuit voltage is a minimum. Determine the voltage if
the coil has inductance 0.1 H and resistance 150 Ω  and the capacitance is 10 μ F. Determine also the
circuit voltage at the fundamental resonant frequency.

[ ω = 1/ ( )LC  ; 378 V ; 482 V]
15. An r.m.s. current of 5 A which has a third-harmonic content, is passed through a coil having a

resistance of 1Ω and an inductance of 10 mH. The r.m.s. voltage across the coil is 20 V. Calculate the
magnitudes of the fundamental and harmonic components of current if the fundamental frequency is
300 2/ π  Hz Also, find the power dissipated.

[4.8 A ; 1.44 A ; 25 W]
16. Derive a general expression for the form factor of a complex wave containing only odd-order

harmonics. Hence, calculate the form factor of the alternating current represented by
i = 2.5 sin 157 t + 0.7 sin 471 t + 0.4 sin 785 t

[1.038]

OBJECTIVE TESTS – 20

1. Non-sinusoidal waveforms are made up of
(a) different sinusoidal waveforms
(b) fundamental and even harmonics
(c) fundamental and odd harmonics
(d) even and odd harmonics only.

2. The positive and negative halves of a
complex wave are symmetrical when
(a) it contains even harmonics

(b) phase difference between even harmonics
and fundamental is 0 or π

(c) it contains odd harmonics
(d) phase difference between even harmonics

and fundamental is either π π/ / .2 3 2or

3. The r.m.s. value of the complex voltage

given by v t t= +16 2 12 2 3sin sinω ω  is
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(a) 20 2 (b) 20

(c) 28 2 (d) 192

4. In a 3-phase system, ___th harmonic has
negative phase sequence of RBY.
(a) 9 (b) 13
(c) 5 (d) 15

5. A complex current wave is given by the

equation i = 14 sin ω ωt t+ 2 5sin .  The r.m.s.
value of the current is ___ ampere.
(a) 16 (b) 12
(c) 10 (d) 8

6. When a pure inductive coil is fed by a
complex voltage wave, its current wave
(a) has larger harmonic content
(b) is more distorted

(c) is identical with voltage wave
(d) shows less distortion.

7. A complex voltage wave is applied across a
pure capacitor. As compared to the
fundamental voltage, the reactance offered
by the capacitor to the third harmonic
voltage would be
(a) nine time (b) three times
(b) one-third (d) one-ninth

8. Which of the following harmonic voltage
components in a 3-phase system would be in
phase with each other ?
(a) 3rd, 9th, 15th etc.
(b) 7th, 13th, 19th etc.
(c) 5th, 11th, 17th etc.
(d) 2nd, 4th, 6th etc.

ANSWERS

1. (a)    2. (c)    3. (b)    4. (c)     5. (c)   6. (d)    7. (c)    8. (d)
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