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19.1. Generation of Polyphase Voltage

The kind of alternating currents and voltages discussed in chapter 12 to 15 are known as
single-phase voltage and current, because they consist of a single alternating current and voltage
wave. A single-phase alternator was diagrammatically depicted in Fig. 11.1 (b) and it was shown
to have one armature winding only. But if the number of armature windings is increased, then it
becomes polyphase alternator and it produces as many independent voltage waves as the  number
of windings or phases. These windings are displaced from one another by equal angles, the values
of these angles being determined by the number of phases or windings. In fact, the word ‘poly-
phase’ means poly (i.e. many or numerous) and phases (i.e. winding or circuit).

In a two-phase alternator, the armature windings are displaced 90 electrical degrees apart. A
3-phase alternator, as the name shows, has three independent armature windings which are 120
electrical degrees apart. Hence, the voltages induced in the three windings are 120° apart in time-
phase. With the exception of two-phase windings, it can be stated that, in general, the electrical
displacement between different phases is 360/n where n is the number of phases or windings.

Three-phase systems are the most common, although, for certain special jobs, greater number
of phases is also used. For example, almost all mercury-arc rectifiers for power purposes are either
six-phase or twelve-phase and most of the rotary converters in use are six-phase. All modern
generators are practically three-phase. For transmitting large amounts of power, three-phase is
invariably used. The reasons for the immense popularity of three-phase apparatus are that (i) it is
more efficient (ii) it uses less material for a given capacity and (iii) it costs less than single-phase
apparatus etc.

In Fig. 19.1 is shown a two-pole, stationary-armature, rotating-field type three-phase
alternator. It has three armature coils aa bb cc′ ′ ′, and  displaced 120° apart from one another. With
the position and clockwise rotation of the poles as indicated in Fig. 19.1, it is found that the e.m.f.
induced in conductor ‘a’ for coil aa′  is maximum and its direction* is away from the reader. The
e.m.f. in conductor ‘b’ of coil bb′  would be maximum and away from the reader when the N-pole
has turned through 120° i.e. when N-S axis lies along bb′.  It is clear that the induced e.m.f. in
conductor ‘b’ reaches its maximum value 120° later than the maximum value in conductor ‘a’. In
the like manner, the maximum e.m.f.
induced (in the direction away from
the reader) in conductor ‘c’ would
occur 120° later than that in ‘b’ or
240° later than that in ‘a’.

Thus the three coils have three
e.m.fs. induced in them which are
similar in all respects except that they
are 120° out of time phase with one
another as pictured in Fig. 19.3. Each
voltage wave is assumed to be
sinusoidal and having maximum
value of Em.

In practice, the space on the armature is completely covered and there are many slots per
phase per pole.

* The direction is found with the help of Fleming’s Right-hand rule. But while applying this rule, it
should be remembered that the relative motion of the conductor with respect to the field is
anticlockwise although the motion of the field with respect to the conductor is clockwise as shown.
Hence, thumb should point to the left.

The rotary phase converter
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Fig. 19.2 illustrates the relative positions of the windings of a 3-phase, 4-pole alternator and
Fig. 19.4 shows the developed diagram of its armature windings. Assuming full-pitched winding
and the direction of rotation as shown, phase ‘a’ occupies the position under the centres of N and
S-poles. It starts at Sa and ends or finishes at Fa.

    Fig. 19.1      Fig. 19.2
The second phase ‘b’ start at Sb which is 120 electrical degrees apart from the start of phase

‘a’, progresses round the armature clockwise (as does ‘a’) and finishes at Fb. Similarly, phase ‘c’
starts at Sc, which is 120 electrical degrees away from Sb, progresses round the armature and
finishes at Fc. As the three circuits are exactly similar but are 120 electrical degrees apart, the
e.m.f. waves generated in them (when the field rotates) are displaced from each other by 120°.
Assuming these waves to be sinusoidal and counting the time from the instant when the e.m.f. in
phase ‘a’ is zero, the instantaneous values of the three e.m.fs. will be given by curves of Fig. 193.

Their equations are :
e E ta m= sinω ... (i)

e E tb m= − °sin( )ω 120 ... (ii)

e E tc m= − °sin( )ω 240 ... (iii)
As shown in Art. 11.23. alternating voltages may be represented by revolving vectors which

indicate their maximum values (or r.m.s. values if desired). The actual values of these voltages vary
from peak positive to zero and to peak negative values in one revolution of the vectors. In Fig. 19.5
are shown the three vectors representing the r.m.s. voltages of the three phases Ea, Eb and Ec (in
the present case Ea = Eb = Ec = E, say).

It can be shown that the sum of the three phase e.m.fs. is zero in the following three ways :
(i) The sum of the above three equations (i), (ii) and (iii) is zero as shown below :

Fig. 19.3
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Resultant instantaneous e.m.f. = ea + eb + ec

= sin sin( 120 ) ( 240)m m mE t E t E t         

= [sin 2sin ( 180 )cos60 ]mE t t      

= [sin 2sin cos60 ] 0mE t t     
(ii) The sum of ordinates of three e.m.f. curves of Fig. 19.3 is zero. For example, taking

ordinates AB and AC as positive and AD as negative, it can be shown by actual measurement that
AB + AC + (– AD) = 0

(iii) If we add the three vectors of Fig. 19.5 either vectorially or by calculation, the result is
zero.

Fig. 19.4

Vector Addition
As shown in Fig. 19.6, the resultant of Ea and Eb is Er and its magnitude is 2E cos 60° = E

where Ea = Eb = Ec = E.
This resultant Er is equal and opposite to Ec. Hence, their resultant is zero.

By Calculation
Let us take Ea as reference voltage and assuming clockwise phase sequence

aE 0 0E E j     

bE 240 120 ( 0.05 0.866)E E E j          

cE 240 120 ( 0.05 0.866)E E E j          

∴ + +a b cE E E ( 0) ( 0.5 0.866) ( 0.05 0.866) 0E j E E j         
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Fig. 19.5 Fig. 19.6

19.2. Phase Sequence

By phase sequence is meant the order in which the three phases attain their peak or maximum
values. In the development of the three-phase e.m.fs. in Fig. 19.7, clockwise rotation of the field
system in Fig. 19.1 was assumed. This assumption made the e.m.fs. of phase ‘b’ lag behind that

Fig. 19.7

of ‘a’ by 120° and in a similar way, made that of ‘c’ lag behind that of ‘b’ by 120° (or that of ‘a’
by 240°). Hence, the order in which the e.m.fs. of phases a, b and c attain their maximum values
is a b c. It is called the phase order or phase sequence a b c→ →  as illustrated in Fig. 19.7 (a).

If, now, the rotation of the field structure of Fig. 19.1 is reversed i.e. made anticlockwise, then
the order in which the three phases would attain their corresponding maximum voltages would also
be reversed. The phase sequence would become a b c→ → . This means that e.m.f. of phase ‘c’
would now lag behind that of phase ‘a’ by 120° instead of 240° as in the previous case as shown
in Fig. 19.7 (b). By repeating the letters, this phase sequence can be written as acbacba which is
the same thing as cba. Obviously, a three-phase system has only two possible sequences : abc and
cba (i.e. abc read in the reverse direction).
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19.3.  Phase Sequence At Load
In general, the phase sequence of

the voltages applied to load is
determined by the order in which the 3-
phase lines are connected. The phase
sequence can be reversed by
interchanging any pair of lines. In the
case of an induction motor, reversal of
sequence results in the reversed
direction of motor rotation. In the case
of 3-phase unbalanced loads, the effect
of sequence reversal is, in general, to
cause a completely different set of
values of the currents. Hence, when
working on such systems, it is essential
that phase sequence be clearly specified
otherwise unnecessary confusion will
arise. Incidentally, reversing the phase
sequence of a 3-phase generator which
is to be paralleled with a similar
generator can cause extensive damage
to both the machines.

Fig. 19.8 illustrates the fact that by
interchanging any two of the three

cables the phase sequence at the load can be
reversed though sequence of 3-phase supply
remains the same i.e. abc. It is customary to define
phase sequence at the load by reading repetitively
from top to bottom. For example, load phase
sequence in Fig. 19.8 (a) would be read as
abcabcabc– or simply abc. The changes are as
tabulated below :

Cables Phase
Interchanged Sequence

a and b b a   c b a c b a   c – or c b a

b and c    a   c b a c b a   c b – or c b a

c and a      c  b a c b a    c b a – or c b a

19.4. Numbering of Phases

The three phases may be numbered 1, 2, 3 or a, b, c or as is customary, they may be given
three colours. The colours used commercially are red, yellow (or sometimes white) and blue. In
this case, the sequence is RYB.

Fig. 19.8

Induction motor for drilling applications
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Obviously, in any three-phase system, there are two possible sequences in which the three coil
or phase voltages may pass through their maximum values i.e. red →  yellow →  blue (RYB) or red
→  blue →  yellow (RBY). By convention, sequence RYB is taken as positive and RBY as negative.

19.5. Interconnection of Three Phases
If the three armature coils of the 3-phase alternator (Fig.

19.8) are not interconnected but are kept separate, as shown in
Fig. 19.9, then each phase or circuit would need two
conductors, the total number of conductors, in that case,
being six. It means that each transmission cable would contain
six conductors which will make the whole system complicated

and expensive.
Hence, the three
phases are
generally inter-
connected which
results in
substantial saving
of copper. The
general methods
of interconnection are

(a) Star or Wye (Y) connection and
(b) Mesh or Delta ( Δ ) connection.

19.6. Star or Wye (Y) Connection
In this method of interconnection, the similar* ends say, ‘star’ ends of three coils (it could

be ‘finishing’ ends also) are joined together at point N as shown in Fig. 19.10 (a).
The point N is known as star point or neutral point.  The three conductors meeting at point

N are replaced by a single conductor known as neutral conductor as shown in Fig. 19.10 (b). Such
an interconnected system is known as four-wire, 3-phase system and is diagrammatically shown in

Fig. 19.10 (b). If this three-phase
voltage system is applied across a
balanced symmetrical load, the neutral
wire will be carrying three currents
which are exactly equal in magnitude
but are 120° out of phase with each
other. Hence, their vector sum is zero.
i.e.       IR + IY + IB = 0

... vectorially
The neutral wire, in that case,

may be omitted although its retention is useful for supplying lighting loads at low voltages (Ex.
19.22). The p.d. between any terminal (or line) and neutral (or star) point gives the phase  or star
voltage. But the p.d. between any two lines gives the line-to-line voltage or simply line voltage.

19.7. Values of Phase Currents

When considering the distribution of current in a 3-phase system, it is extremely important to
bear in mind that :

Fig. 19.9

Fig. 19.10

3-phase alternator

* As an aid to memory, remember that first letter S of Similar is the same as that of Star.
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(i) the arrow placed alongside the currents IR IY and IB flowing in the three phases [Fig. 19.10
(b)] indicate the directions of currents when they are assumed to be positive and not the directions
at a particular instant. It should be clearly understood that at no instant will all the three currents
flow in the same direction either outwards or inwards. The three arrows indicate that first the
current flows outwards in phase R, then after a phase-time of 120°, it will flow outwards from
phase Y and after a further 120°, outwards from phase B.

(ii) the current flowing outwards in one or two conductors is always equal to that flowing
inwards in the remaining conductor or conductors. In other words, each conductor in turn,
provides a return path for the currents of the other conductors.

In Fig. 19.11 are shown the three phase currents, having the same peak value of 20 A but
displaced from each other by 120°. At instant ‘a’,
the currents in phases R and B are each + 10 A (i.e.
flowing outwards) whereas the current in phase Y is
– 20A (i.e. flowing inwards). In other words, at the
instant ‘a’, phase Y is acting as return path for the
currents in phases R and B. At instant b, IR = +15 A
and IY = +5 A but IB = –20A which means that now
phase B is providing the return path.

At instant c, IY = +15 A and IB = +5A and
IR = – 20A.

Hence, now phase R carries current inwards
whereas Y and B carry current outwards. Similarly at
point d, IR = 0, IB = 17.3 A and IY = – 17.3 A. In
other words, current is flowing outwards from phase
B and returning via phase Y.

In addition, it may be noted that although the distribution of currents between the three lines
is continuously changing, yet at any instant the algebraic sum of the instantaneous values of the
three currents is zero i.e. iR + iY + iB = 0 – algebraically.

19.8. Voltages and Currents in Y-Connection

The voltage induced in each
winding is called the phase voltage
and current in each winding is likewise
known as phase current. However, the
voltage available between any pair of
terminals (or outers) is called line
voltage (VL) and the current flowing in
each line is called line current (IL ).

As seen from Fig. 19.12 (a), in
this form of interconnection, there are
two phase windings between each pair
of terminals but since their similar
ends have been joined together, they

are in opposition. Obviously, the instantaneous value of p.d. between any two terminals is the
arithmetic difference of the two phase e.m.fs. concerned. However, the r.m.s. value of this p.d. is
given by the vector difference of the two phase e.m.fs.

The vector diagram for phase voltages and currents in a star connection is shown in
Fig. 19.12.

Fig. 19.11

Fig. 19.12
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(b) where a balanced system has been assumed.* It means that ER = EY = Eph (phase e.m.f.).
Line voltage VRY between line 1 and line 2 is the vector difference of ER and EY.
Line voltage VYB between line 2 and line 3 is the vector difference of EY and EB.
Line voltage VBR between line 3 and line 1 is the vector difference of EB and ER.
(a) Line Voltages and Phase Voltages
The p.d. between line 1 and 2 is VRY = ER – EY ... vector difference.
Hence, VRY is found by compounding ER and EY reversed

and its value is given by the diagonal of the parallelogram of
Fig. 19.13. Obviously, the angle between ER and EY reversed is
60°. Hence if  ER = EY = EB = say, Eph – the phase e.m.f., then

         V ERY ph= × × °2 60cos( /2)

            = × × °= × × =2 30 2
3

2
3E E Eph ph phcos

Similarly, V E E EYB Y B ph= − = ⋅3  ...vector difference

and      V E E EBR B R ph= − = ⋅3

Now    V V YRY YB BR= = =  line voltage, say VL. Hence, in

star connection V EL ph= ⋅3

It will be noted from Fig. 19.13 that
1. Line voltages are 120° apart.
2. Line voltages are 30° ahead of their respective phase voltages.
3. The angle between the line currents and the corresponding line voltages is (30 + φ ) with

current lagging.
(b) Line Currents and Phase Currents
It is seen from Fig. 19.12 (a) that each line is in series with its individual phase winding,

hence the line current in each line is the same as the current in the phase winding to which the line
is connected.

Current in line 1 = IR ; Current in line 2 = IY; Current in line 3 = IB
Since IR = IY = IB = say, Iph – the phase current
∴ line current IL = Iph
(c) Power
The total active or true power in the circuit is the sum of the three phase powers. Hence,
total active power = 3 × phase power or P = 3 × Vph Iph cos φ

Now Vph = VL / 3    and   Iph = IL

Hence, in terms of line values, the above expression becomes

P
V

I P V IL
L L L= × × × =3

3
3cos cosφ φor

Fig. 19.13

* A balanced system is one in which (i) the voltages in all phases are equal in magnitude and offer in
phase from one another by equal angles, in this case, the angle = 360/3 = 120°, (ii) the currents in the
three phases are equal in magnitude and also differ in phase from one another by equal angles.
A 3-phase balanced load is that in which the loads connected across three phases are identical.
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It should be particularly noted that φ  is the angle between phase voltage and phase current
and not between the line voltage and line current.

Similarly, total reactive power is given by Q = 3V IL L sinφ
By convention, reactive power of a coil is taken as positive and that of a capacitor as

negative.
The total apparent power of the three phases is

S V IL L= 3 Obviously,  S P Q= +2 2  – Art. 13.4

Example 19.1. A balanced star-connected load of (8 + j6) Ω  per phase is connected to a
balanced 3-phase 400-V supply. Find the line
current, power factor, power and total volt-amperes.

(Elect. Engg., Bhagalpur Univ.)

Solution. Zph = 8 6 102 2+ = Ω

          Vph = =400 3 231/ V

         I V Zph ph ph= = =/ / .231 10 231 A

 (i) IL = Iph = 23.1 A

(ii) p.f. = cos φ  = Rph/Zph = 8/10 = 0.8 (lag)

(iii) Power 3 cosL LP V I  

= × × ×3 400 231 0 8. .  = 12,800 W [Also, P = 3 2I ph Rph = 3(23.1)2 × 8 = 12,800 W]

(iv) Total volt-amperes, S = 3 VLIL = 3  × 400 × 23.1 = 16,000 VA

Example 19.2. Phase voltages of a star connected alternator are ER = 231 ∠ 0° V; EY = 231
∠ –120° V ; and EB = 231 ∠ +120°V. What is the phase sequence of the system  ? Compute the
line voltages ERY and EYB. (Elect. Mechines AMIE Sec. B Winter 1990)

Solution . The phase voltage EB = 231 120∠ − °  can be written as EB = 231 240∠ − ° . Hence,
the three voltages are: ER = 231 0∠ − ° ,  EY = 231 120∠ − °  and EB = 231 240∠ − ° . It is seen that
ER is the reference voltage, EY lags behind it by 120° whereas EB lags behind it by 240°. Hence,
phase sequence is RYB. Moreover, it is a symmetrical 3-phase voltage system.

∴ E ERY YB= = × =3 231 400 V
Example 19.3 Three equal star-connected inductors take 8 kW at a power factor 0.8 when

connected across a 460 V, 3-phase, 3-phase, 3-wire supply. Find the circuit constants of the load
per phase.           (Elect. Machines AMIE Sec. B 1992)

Solution. P V IL L= 3 cosφ  or

8000 3 460 0 8= × × ×IL .

∴  IL = 12.55 A ∴  Iph = 12.55 A;

  Vph = VL/ 3 460 / 3 265V  

  / ; / 265/12.55 21.1ph ph ph ph ph phI V Z Z V I= ∴ = = = Ω

 R Zph ph= = × =cos . . .φ 211 0 8 16 9 Ω
Fig. 19.15

Fig. 19.14
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 X Zph ph= sinφ  = × =211 0 6 12 66. . . ;Ω
The circuit is shown in Fig. 19.15.
Example 19.4. Given a balanced 3− φ,  3-wire system with Y-connected load for which line

voltage is 230 V and impedance of each phase is (6 + J8) ohm. Find the line current and power
absorbed by each phase. (Elect. Engg - II Pune Univ. 1991)

Solution. Z V Vph ph L= + = = = =6 8 10 3 230 3 1332 2 Ω; / / V

        cos / / . ; / / .φ = = = = = =R Z I V Zph ph ph6 10 0 6 133 10 133A

∴            I IL ph= = 13.3 A

Power absorbed by each phase = 
2 213.3 6ph phI R = × = 1061 W

Solution by Symbolic Notation
In Fig. 19.16 (b), VR, VY and VB are the phase voltage whereas IR, IY and IB are phase currents.

Taking VR as the reference vector, we get

Fig 19.16

RV 133 0 133 0 voltj     

VY 133 120 133( 0.5 0.866) ( 66.5 115)voltj j          

VB = 133  ∠ 120° = 133 (– 0.5 + j 0.866) = (– 66.5 + j 115) volt

Z = 6 + j8 = 10 ∠ 53° ′8 ; IR = RV
Z

133 0 13.3 53º8
10 53 8

       
   

This current lags behind the reference voltage by 53 8° ′  [Fig. 19.16 (b)]

Y
VI =
Z
Y 133 120 13.3 173 8

10 53 8
         
   

It lags behind the reference vector i.e. VR by 173º8′  which amounts to lagging behind its
phase voltage VY by 53 8° ′ .

 VI
Z

B
B

133 120 13.3 66º52
10 53 8

       
   

This current leads VR By 66 52° ′  which is the same thing as lagging behind its phase voltage
by 53 8° ′. For calculation of power, consider R-phase

VR = (133 – j0); IR = 13.3 (0.6 – j0.8) = (7.98 – j10.64)
Using method of conjugates, we get

PVA = (133 – j0) (7.98 – j10.64) = 1067 – j1415
∴ Real power absorbed/phase = 1067 W – as before



676 Electrical Technology

Fig. 19.18

Fig. 19.17

Example 19.5. When the three identical star-connected coils are supplied with 440 V, 50 Hz,
3- φ  supply, the 1- φ  wattmeter whose current coil is connected in line R and pressure coil across
the phase R and neutral reads 6 kW and the ammeter connected in R-phase reads 30 Amp.
Assuming RYB phase sequence find:

  (i) resistance and reactance of the coil,      (ii) the power factor, of the load
(iii) reactive power of 3- φ  load.         (Elect. Engg.-I, Nagpur Univ. 1993)

Solution. V Iph ph= = =440 3 254 30/ ;V A
(Fig. 19.17.)

Now, Vph Iph cos φ  = 6000 ; 254 × 30 × cos φ
= 6000

∴ cos φ  = 0.787 ; φ  = 38.06° and sin φ  =
0.616°; Zph = Vph / Iph = 254/30 = 8.47 Ω

(i) Coil resistance R = Zph cos φ  = 8.47 × 0.787
= 6.66 Ω

XL = Zph sin φ  = 8.47 × 0.616 = 5.22 Ω
 (ii) p.f. = cos φ  = 0.787 (lag)

(iii) Reactive power = 3 sin 3 440 30 0.616 14,083VAL LV I        14.083kVA
Example 19.6 Calculate the active and reactive components in each phase of Y-connected

10,000 V, 3-phase alternator supplying 5,000 kW at 0.8 p.f. If the total current remains the same
when the load p.f is raised to 0.9, find the new output.

(Elements of Elect. Engg.-I, Bangalore Univ.)

Solution. 5000 × 103 = 3 10,000 0.8; 361AL L phI I I     

active component= ILcos φ = 361 × 0.8 = 288.8 A
reactive component= IL sin φ  = 361 × 0.6 = 216.6 A

New power P = 3 3 10 361 0 94V IL L cos .φ = × × ×  = 5,625 kW
[or new power = 5000 × 0.9/0.8 = 5625 kW]
Example 19.7. Deduce the relationship between the phase and line voltages of a three-phase

star-connected alternator. If the phase voltage of a 3-phase star-connected alternator be 200 V,
what will be the line voltages (a) when the phases are correctly connected and (b) when the
connections to one of the phases are reversed.

Solution. (a) When phases are correctly connected, the vector diagram is as shown in Fig.
19.12. (b). As proved in Art. 19.7

VRY = VYBVBR = 3.EPh

Each line voltage = 3 200× = 346 V

(b) Suppose connections to B-phase have been
reversed. Then voltage vector diagram for such  a case is
shown in Fig. 19.18. It should be noted that EB has been
drawn in the reversed direction, so that angles between the
three-phase voltages are 60° (instead of the usual 120°)

VRY = ER – EY ... vector difference

     = 2 × Eph × cos 30° = 3 200×  = 346 V
VYB = EY –EB ... vector difference
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  = 2 × Eph × cos 60° = 2 200
1

2
× ×  = 200V

VBR = EB – ER   ... vector difference = 2 × Eph × cos 60° = 2 200
1

2
× ×  = 200 V

Example 19.8 In a 4-wire, 3-phase system, two phases have currents of 10A and 6A at
lagging power factors of 0.8 and 0.6 respectively while the third phase is open-circuited,
Calculate the current in the neutral and sketch the vector diagram.

Solution. The circuit is shown in Fig. 19.19 (a).

φ φ1
1

2
10 8 36 54 0 6 53 6= = ° = = ° ′− −cos ( . ) '; cos ( . )

Let VR be taken as the reference vector. Then

IR = 10 36 54 8 6∠ − ° ′ = −( )j  Iy = 6 173 6 6 0 72∠ − ° ′ = − −( . )j

The neutral current IN, as shown in Fig. 19.16 (b), is the sum of these two currents.
∴ IN = (8 – j6) + (–6 – j0.72) = 2 – j6.72= 7 73 26∠ − ° ′

Fig. 19.19

Example 19.9 (a). Three equal star-connected inductors take 8 kW at power factor 0.8 when
connected a 460-V, 3-phase, 3-wire supply. Find the line currents if one inductor is short-
circuited.

Solution. Since the circuit is balanced, the three line voltages are represented by

Vab = 460 0 460 120 460 120∠ ° = ∠ − ° = ∠ °;V Vbc caand

The phase impedance can be found from the given data :

8000 3 460 0 8= × × ×IL .  ∴ IL = Iph = 12.55 A

Z V Iph ph ph= = × =/ / . . ;460 3 12 55 212 Ω

∴   Z ph = ∠ °212 36 9. .  because φ  = cos–1 (0.8) = 36.9°

As shown in the Fig. 19.20, the phase c has been short-
circuited. The line current Ia = Vac/Zph = – Vca/Zph because the
current enters at point a and leaves from point c.

∴  Ia = − ∠ ∠ = ∠460 1200 2 36 9 217 831º/21. . º . . º

Similarly, Ib = Vbc/Zph = 460 ∠ 120º/21.2  ∠ 36.9º = 21.7 ∠ –156.9º. The current Ic can be
found by applying KVL to the neutral point N.

∴ Ia + Ib + Ic = 0    or   Ic = – Ia – Ib

Fig. 19.20



678 Electrical Technology

∴ IC = ∠ − ∠ − = ∠217 831 217 156 9 37 3 536. . º . . º . . º

Hence, the magnitudes of the three currents are : 21.7 A;
21.7 Al  37.3 A.

Example 19.9 (b). Each phase of a star-connected load consists of a non-reactive resistance
of 100 Ω  in parallel with a capacitance of 31.8 μF.

Calculate the line current, the power absorbed,
the total kVA and the power factor when connected to
a 416-V, 3-phase, 50-Hz supply.

Solution. The circuit is shown in Fig. 14.20.

V jph = ∠ = ∠ = +( / ) º º ( )416 3 0 240 0 240 0

Admittance of each phase is

  Yph
61 1 314 31.8 10

100
j C j

R
        

        = +0 01 0 01. .j

∴ Iph = Vph . Yph = 240(0.01 + j0.01)

         = 2.4 + j2.4 = 3.39 ∠45º

Since Iph = IL – for a star connection  ∴  IL = 3.39 A
Power factor = cos 45° = 0.707 (leading)
Now Vph = (240 + j0) ; Iph = 2.4 + j2.4
∴ PVA = (240 + j0) (2.4 + j 2.4)

     = 240 × 2.4 – j2.4 × 240 = 576 – j576 = 814.4 ∠ –45° ... per phase
Hence, total power = 3 × 576 = 1728  W = 1.728 kW
Total voltampers = 814.4 × 3 = 2,443 VA ; kilovolt amperes = 2.433 kVA
Example 19.10. A three pahse 400-V, 50 Hz, a.c. supply is feeding a three phase delta-

connected load with each phase having a resistance of 25 ohms, an inductance of 0.15 H, and a
capacitor of 120 microfarads in series. Determine the line current, volt-amp, active power and
reactive volt-amp. [Nagpur University, November 1999]

Solution. Impedance per phase r + jXL – jXC

      XL = 2 50 015 471π × × =. . Ω

     XC = 
610 26.54.32 37

= Ω

cos
.

φ = 25

32 37
 Lagging, since inductive reactance

is dominating.

Phase Current = 
400

25 20 56
12 357

+
=

j .
.

Line Current = 3 12 357× .  = 21.4 amp
Since the power factor is 0.772 lagging,

Fig. 19.21

Fig. 19.22
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P = total three phase power = 3 10 3V I kWL L cosφ × −

= 3  × 400 × 21.4 × 0.772 × 10–3 = 11.446 kW

S = total 3 ph kVA 
11446

0 772

.

.
 = 14.83 kVA 14.83 kVA

Q = total 3 ph “reactive kilo-volt-amp” 3  = (S2 – P2)0.50 = 9.43 kVAR lagging
Example 19.11. Three phase star-connected load when supplied from a 400 V, 50 Hz source

takes a line current of 10 A at 66.86º w.r. to its line voltage. Calculate : (i) Impedance-Parameters,
(ii) P.f. and active-power consumed. Draw the phasor diagram.

[Nagpur University, April 1998]
Solution. Draw three phasors for phase-voltages.

These are Vph1, Vph2, Vph3 in Fig 19.23. As far as
phase number 1 is concerned, its current is I1 and
the associated line voltage is VL1 . VL1 and Vph1
differ in phase by 30°. A current differing in
phase with respect to line voltage by 66.86º
and associated with Vph1 can only be lagging,
as shown in Fig. 19.23. This means φ  = 36.86º,
and the corresponding load power factor is 0.80
lagging.

Z = Vph/Iph = 231/10 = 23.1 ohms

 R = Z cos φ  = 23.1 × 0.8 = 18.48 ohms

XL = Z sin φ  = 23.1 × ?0.6 = 13.86 ohms

Total active power consumed = 3 Vph Iph cos φ

 = 3 × 231 × 10 × 0.8 × 10–3 kW = 5.544 kW
or total active power = 3 × I2R = 3 × 102 × 18.48 = 5544 watts
For complete phasor diagram for three phases, the part of the diagram for Phase 1 in

Fig 19.23 has to be suitably repeated for phase-numbers 2 and 3.

19.9.  Delta (ΔΔΔΔΔ)* or Mesh Connection

In this form, of interconnection the dissimilar ends of the three phase winding are joined
together i.e. the ‘starting’ end of one phase is joined to the ‘finishing’ end of the other phase and

so on as showing in Fig. 19.24 (a).
In other words, the three windings
are joined in series to form a closed
mesh as shown in Fig. 19.24 (b).

Three leads are taken out from
the three junctions as shown as
outward directions are taken as
positive.

It might look as if this sort
of interconnection results in

Fig. 19.23

Fig. 19.24

* As an aid to memory, remember that first letter D of Dissimilar is the same as that of Delta.
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shortcircuiting the three windings. However, if the system is balanced then sum of the three
voltages round the closed mesh is zero, hence no current of fundamental frequency can flow
around the mesh when the terminals are open. It should be clearly understood that at any instant,
the e.m.f. in one phase is equal and opposite to the resultant of those in the other two phases.

This type of connection is also referred to as 3-phase, 3-wire system.
(i) Line Voltages and Phase Voltages
It is seen from Fig. 19.24 (b) that there is only one phase winding completely included

between any pair of terminals. Hence, in Δ-connection, the voltage between any pair of lines is
equal to the phase voltage of the phase winding connected between the two lines considered. Since
phase sequence is R Y B, the voltage having its positive direction from R to Y leads by 120° on that
having its positive direction from Y to B. Calling the voltage between lines 1 and 2 as VRY and that
between lines 2 and 3 as VYB, we find that VRY lead VYB by 120°. Similarly, VYB leads VBR by 120º
as shown in Fig. 19.23. Let VRY = VYB = VBR = line voltage VL. Then, it is seen that VL = Vph.

(ii) Line Currents and Phase Currents
It will be seen from Fig. 19.24 (b) that current in each line is the vector difference of the two

phase currents flowing through that line. For example

1

2

3

Current in line 1 is 
Current in line 2 is 
Current in line 3 is 

R B

Y R

B Y

I I I
I I I
I I I

   
    
    

 vector difference

Current in line No. 1 is found by compounding IR and IB reversed and its value is given by
the diagonal of the parallelogram of Fig. 19.25. The angle between IR and IB reversed (i.e. – IB) is
60°. If IR = IY = phase current Iph (say), then

Current in line No. 1 is

I1 = 2 × Iph × cos (60º/2) = 2 × Iph 3 2 3/ = I ph

Current in line No. 2 is

I2 = IB – IY ... vector difference = 3I ph and current

in line No. 3 is  I3 = IB – IY   ∴ Vector difference = 3 ⋅ I ph

Since all the line currents are equal in magnitude i.e.
I1 = I2 – I3 = IL

∴ IL = 3 I ph

With reference to Fig. 19.25, it should be noted that
1. line currents are 120º apart ;
2. line currents are 30º behind the respective phase currents ;
3. the angle between the line currents and the corresponding line voltages is (30 + φ ) with

the current lagging.
(iii) Power
Power/phase = VphIph cos φ ; Total power = 3 × VphIph cos φ . However, Vph = VL and Iph = IL/ 3
Hence, in terms of line values, the above expression for power becomes

P V
I

V IL
L

L L= × × × =3
3

3cos cosφ φ

where φ  is the phase power factor angle.

Fig. 19.25
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19.10. Balanced Y/ΔΔΔΔΔ and ΔΔΔΔΔ/Y Conversion
In view of the above relationship between line and phase currents and voltages, any balanced

Y-connected system may be completely replaced by an equivalent Δ-connected system. For
example, a 3-phase, Y-connected system having the voltage of VL and line current IL may be
replaced by a Δ-connected system in which phase voltage is VL and phase current is IL / 3 .

Fig. 19.26

Similarly, a balanced Y-connected load having equal branch impedances each of Z ∠ φ  may
be replaced by an equivalent Δ -connected load whose each phase impedance is 3Z ∠ φ . This
equivalence is shown in Fig. 19.26.

For a balanced star-connected load, let
VL = line voltage; IL = line current ; ZY = impedance/phase

∴  / 3. ; /( 3 )ph L ph L Y L LV V I I Z V I   

Now, in the equivalent  Δ -connected system, the line voltages and currents must have the
same values as in the Y-connected system, hence we must have

V V I I Z V I V I Zph L ph L L L L L Y= = ∴ = = =, / / ( / ) /3 3 3 3Δ

∴ Z ZYΔ ∠φ = ∠φ3 ( / ) V I ZL L Y= 3

or Z Z Z ZΔ Δ= =3 3Y Yor /
The case of unbalanced load conversion is considered later. (Art. 19.34)
Example 19.12. A star-connected alternator supplies a delta connected load. The impedance

of the load branch is (8 + j6) ohm/phase. The line voltage is 230 V. Determine (a) current in the
load branch, (b) power consumed by the load, (c) power factor of load, (d) reactive power of the
load. (Elect. Engg. A.M.Ae. S.I. June 1991)

Solution. Considering the Δ-connected load, we have Z V Vph ph L= + = =28 6 102 Ω; = 230 V
(a) Iph = Vph/Zph = 230/10 = 23 A

(b) I I AL ph= = × =3 3 23 39 8. ;   3 cos 3 230 39.8 0.8L LP V I        12,684 W

(c) p.f. cos φ  = R | Z = 8/10 = 0.8 (lag)

(d) Reactive power Q = 3  VL IL sin 3 230 39.8 0.6       9513 W

Example 19.13. A 220-V, 3- φ  voltage is applied to a balanced delta-connected 3- φ  load of
phase impedance (15 + j20) Ω

(a) Find the phasor current in each line. (b) What is the power consumed per phase ?
(c) What is the phasor sum of the three line currents ? Why does it have this value ?

(Elect. Circuits and Instruments, B.H.U.)
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 Solution. The circuit is shown in Fig. 19.27 (a).

V V V Z I V Zph L ph ph ph ph= = = + = = = =220 15 20 25 220 25 8 82 2; , / / .Ω A

(a) I IL ph= = × =3 3 8 8.  15.24 A  (b) P I Rph ph= = × =2 28 8 15.  462 W

(c) Phasor sum would be zero because the three currents are equal in magnitude and have a
mutual phase difference of 120°.

Solution by Symbolic Notation
Taking VRY as the reference vector, we have [Fig. 19.27 (b)]

Fig. 19.27

VRY 20 0 ;   VYB 220 120    

VBR 220 120 ;                      Z 15 20 125 53º8j     

IR
220 0º 8.8 53º8 (5.28 7.04)

Z 25 53º8
RYV j A        

  

IY
220 120º 8.8 173º8 ( 8.75 1.05)

Z 25 53º8
YBV j A           

  

IB
220 120º 8.8 66º55 (3.56 8.1)

Z 25 53º8
BRV j         

  
(a) Current in line No. 1 is

I1 = IR – IB = (5.28 – j 7.04) – (4.56 + j8.1) = (1.72 – j15.14) = 15.23 ∠  – 83.5º

I2 = IY – IR = (–8.75 – j 1.05) – (5.28 – j7.04) = (–14.03 + j 6.0) = 15.47 ∠  – 156.8º

I3 = IB – IY = (3.56 – j 8.1) – (– 8.75 – j1.05) = (12.31 + j 9.15) = 15.26 ∠  36.8º
(b) Using conjugate of voltage, we get for R-phase
PVA = VRY . IR = (220 – j0) (5.28 – 7.04) = (1162 – j 1550) voltampere
Real power per phase = 1162 W
(c) Phasor sum of three line currents
= I1 + I2 + I3 = (1.72 – j 15.14) + (– 14.03 + j 6.0) + (12.31 + j 9.15) = 0
As expected, phasor sum of 3 line currents drawn by a balanced load is zero because these

are equal in magnitude and have a phase difference of 120° amount themselves.
Example 19.14 A 3-φ, Δ-connected alternator drives a balanced 3-φ load whose each phase

current is 10 A in magnitude. At the time when Ia = 10 ∠ 30º, determine the following, for a phase
sequence of abc.

(i) Polar expression for Ib and Ic and (ii) polar expressions for the three line current.
Show the phase and line currents on a phasor diagram.
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Solution. (i) Since it is a balanced 3-phase system, Ib lags Ia by 120° and Ic lags Ia by 240°
or leads it by 120°.

∴ I Ib a= ∠ − ° = ∠ °− ° = ∠ − °120 10 30 120 10 90( )

I Ic a= ∠ = ∠ + ° = ∠ °120 10 30 120 10 150º ( º )

The 3-phase currents have been represented on the phasor diagram of Fig. 19.28 (b).
As seen from Fig. 19.28 (b), the line currents lag behind their nearest phase currents by 30°.

Fig. 19.28

∴ 1 3 (30º 30º )L aI I      17.3 0°

2 3 ( 90º 30º )L bI I      117.3 120°  

3 3 (150º 30º )L CI I     17.3 120° 

These line currents have also been shown in Fig. 19.28 (b).
Example 19.15. Three similar coils, each having a resistance of 20 ohms and an inductance

of 0.05 H are connected in (i) star (ii) mesh to a 3-phase, 50-Hz supply with 400-V between lines.
Calculate the total power absorbed and the line current in each case. Draw the vector diagram
of current and voltages in each case. (Elect. Technology, Punjab Univ. 1990)

Solution. 2 22 50 0.05 15 , 15 20L phX Z         25Ω

(i) Star Connection. [Fig. 19.29 (a)]

Fig. 19.29
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V I V Zph ph ph ph= = = = =400 3 231 231 25/ ; / /V 9.24Ω

 L phI I  9.24 A; 3 400 9.24 (20 / 25)P      5120W
(ii) Delta Connection [Fig. 19.29 (b)]

400 ; 400 / 25 16 ; 3 3 16ph L ph L phV V V I A I I        27.7 A

  P = × × × =3 400 27 7 20 25. ( / ) 15,360 W

Note. It may be noted that line current as well as power are three times the star values.

Example 19.16. A Δ -connected balanced 3-phase load is supplied from a 3-phase, 400-V
supply. The line current is 20 A and the power taken by the load is 10,000 W. Find (i) impedance
in each branch (ii) the line current, power factor and power consumed if the same load is
connected in star. (Electrical Machines, A.M.I.E. Sec. B. 1992)

Solution. (i) Delta Connection.

V V V I A Iph L L ph= = = =400 20 20 3; ; / A

(i) ∴   
400 20 3

20 / 3phZ    34.64 Ω

Now P V IL L= ∴ = × × =3 10 000 3 400 20cos cos , /φ φ  0.7217
(ii) Star Connection

       
400 400 / 3 20 20, , A

3 33 3ph ph L phV I A I I     

Power factor remains the same since impedance is the same.

Power consumed = 3 400 20 3 0 7217× × + =( / ) .  3,330 W
Note. The power consumed is 1/3 of its value of Δ-connection.

Example 19.17. Three similar resistors are connected in star across 400-V, 3-phase lines.
The line current is 5 A. Calculate the value of each resistor. To what value should the line voltage
be changed to obtain the same line current with the resistors delta-connected.

Solution. Star Connection

I I A V RL ph ph ph= = = = ∴ = =5 400 3 231 231 5; / /V  46.2 ΩΩΩΩΩ

Delta Connection

   IL = 5 A... (given); Iph = 5 3/ ;A Rph = 46.2 Ω
... found above

5 46.2 / 3 1ph ph phV I R     133.3 V

Note. Voltage needed is 1/3rd the star value.

Example 19.18. A balanced delta connected load, consisting of there coils, draws 10 3  A
at 0.5 power factor from 100 V, 3-phase supply. If the coils are re-connected in star across the
same supply, find the line current and total power consumed.

(Elect. Technology, Punjab Univ. Nov.)
Solution. Delta Connection

100 ; 10 3 ; 10 3 / 3ph L L phV V V I A I     10 A
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/ 100/10 10 ; cos 0.5 (given); sin 0.866ph ph phZ V I= = = Ω φ = φ =

∴ cos 10 0.5 5 ; sin 10 0.866ph ph ph phR Z X Z           8.66  

Incidentally, total power consumed = 3 3 100 10 3 0 5 1500V IL L cos .φ = × × × = W
Star Connection

/ 3 100 / 3; 10 ; / 100 / 3 10 10 3 Aph L ph ph ph phV V Z I V Z        

Total power absorbed = 3 100 10 3 0 5× × × =( ) .  500 W
It would be noted that the line current as well as the power absorbed are one-third of that in

the delta connection.
Example 19.19. Three identical impedances are connected in delta to a 3 φ  supply of 400 V.

The line current is 35 A and the total power taken from the supply is 15 kW. Calculate the resistance
and reactance values of each impedance. (Elect. Technology, Punjab Univ.,)

Solution.  V V I Iph L L ph= = = ∴ =400 35 35 3V A A; /

Z V Iph ph ph= = × =/ / .400 3 35 19 8 A

Now,

Power P = 3V IL L cosφ  ∴ = =
× ×

cos
,φ P

V IL L3

15 000

3 400 35
 = 0.619; But sin φ  = 0.786

∴ cos 19.8 0.619ph phR Z     12.25 ; sin and 19.8 0.786ph ph phX Z X     15.5  

Example 19.20. Three 100 Ω  non-inductive resistances are connected in (a) star (b) delta
across a 400-V, 50-Hz, 3-phase mains. Calculate the power taken from the supply system in each
case. In the event of one of the three resistances getting open-circuited, what would be the value
of total power taken from the mains in each of the two cases ?

(Elect. Engg. A.M.Ae. S.I June, 1993)
Solution. (i) Star Connection [Fig. 19.30 (a)]

400/ 3phV V 

  P V IL L= 3 cosφ

     = 3 400 4 1 3× × × =/ 1600 W
(ii) Delta Connection Fig.

19.30 (b)
V Rph ph= =400 100V; Ω

I ph = =400 100 4/ A

IL = ×4 3 A

P = × × × ×3 400 4 3 1  = 4800 W
When one of the resistors is disconnected
(i) Star Connection [Fig. 19.28 (a)]

The circuit no longer remains a 3-phase circuit but consists of two 100 Ω  resistors in series
across a 400-V supply. Current in lines A and C is = 400/200 = 2 A

Power absorbed in both = 400 × 2 = 800 W
Hence, by disconnecting one resistor, the power consumption is reduced by half.

Fig. 19.30
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(ii) Delta Connection [Fig. 19.28 (b)]
In this case, currents in A and C remain as usual 120° out of phase with each other.
Current in each phase = 400/100 = 4 A
Power consumption in both = 2 × 42 × 100 = 3200 W

(or P = 2 × 4 × 400 = 3200 W)
In this case, when one resistor is disconnected, the power consumption is reduced by one-third.

Example 19.21. A 200-V, 3- φ  voltage is applied to a balanced Δ-connected load consisting of
the groups of fifty 60-W, 200-V lamps. Calculate phase and line currents, phases voltages, power
consumption of all lamps and of a single lamp included in each phase for the following cases :

(a) under normal conditions of operation
(b) after blowout in line ′R R  (c) after blowout in phase YB
Neglect impedances of the line and internal resistances of the sources of e.m.f.
Solution. The load circuit is shown in Fig. 19.31 where each lamp group is represented by

two lamps only. It should be kept in mind that lamps remain at the line voltage of the supply
irrespective of whether the Δ-connected load is balanced or not.

(a) Normal operating conditions [Fig. 19.31 (a)]
Since supply voltage equals the rated voltage of the bulbs, the power consumption of the

lamps equals their rated wattage.
Power consumption/lamp = 60 W; Power consumption/phase = 50 × 60 = 3,000 W
Phase current = 3000/200 = 15 A ; Line current = 15 3×  = 26 A
(b) Line Blowout [Fig. 19.31 (b)]
When blowout occurs in line R, the lamp group of phase Y-B remains connected across line

voltage .YB y BV V ′ ′=  However, the lamp groups of other two phases get connected in series across
the same voltage VYB. Assuming that lamp resistances remain constant, voltage drop across YR =
VYB 200/2 = 100 V and that across RB = 100 V.

Hence, phase currents are as under :
    IYB = 3000/200 = 15 A, IYB = IRB = 15/2 = 7.5 A

The line currents are :

    0, 15 7.5R R Y Y B B YB YRI I I I I          22.5 A

Power in phase YR = 100 × 7.5 = 750 W; Power/lamp = 750/50 = 15 W
Power in phase YB = 200 × 15 = 3000 W ; Power/lamp = 3000/50 = 60 W
Power in phase RB = 100 × 7.5 = 750 W ; Power/lamp = 750/50 = 15 W

Fig. 19.31
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(c) Phase Blowout [Fig. 19.31 (c)]
When fuse in phase Y-B blows out, the phase voltage becomes zero (though voltage across

the open remains 200 V). However, the voltage across the other two phases remains the same as
under normal operating conditions.

Hence, different phase currents are :

RYI  15 A, BRI  15 A, YBI  0
The line currents become

15 3R RI    26 A; Y YI  15 A, B BI   15A
Power in phase RY = 200 × 15 = 3000 W, Power/lamp = 3000/50 = 60 W
Power in phase RB = 200 × 15 = 3000 W, Power/lamp = 3000/50 = 60 W
Power in phase YB = 0; power/lamp = 0.
Example 19.22. The load connected to a 3-phase supply comprises three similar coils

connected in star. The line currents are 25 A and the kVA and kW inputs are 20 and 11 respectively.
Find the line and phase voltages, the kVAR input and the resistance and reactance of each coil.

If the coils are now connected in delta to the same three-phase supply, calculate the line
currents and the power taken.

Solution. Star Connection
cosφ  k = W/kVA = 11/20 IL = 25 A P = 11 kW = 11,000 W

Now P = 3 V IL L cosφ ∴ 11,000 = 3  × VL × 25 × 11/20

∴ LV  462 V; Vph = =462 3/ 267 V
2 2 2 2kVAR kVA kW 20 11     16.7; 267 / 2 10.68phZ   

∴ R Zph ph= × = × =cos . /φ 10 68 11 20 5.87 ΩΩΩΩΩ

∴ sin 10.68 0.838ph phX Z      897ΩΩΩΩΩ
Delta Connection

V V V Zph L ph= = =462 10 68and . Ω

∴ 462 /10.68A, 3 462/10.68 75Aph LI I    

  P = × × × =3 462 75 11 20/ 33,000 W

Example 19.23. A 3-phase, star-connected system with 230 V between each phase and
neutral has resistances of 4, 5 and 6 Ω  respectively in the three phases. Estimate the current
flowing in each phase and the neutral current. Find the total power absorbed.  (I.E.E. London)

Solution. Here, Vph = 230 V [Fig.
19.32 (a)]

Current in 4-Ω  resistor = 230/4
= 57.5 A

Current in 5-Ω  resistor = 230/5
= 46 A

Current in 6- Ω  resistor = 230/6
= 38.3 A

Fig. 19.32
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These currents are mutually displaced by 120°. The neutral current IN is the vector sum* of
these three currents. IN can be obtained by splitting up these three phase currents into their X-
components and Y-components and then by combining them together, in diagram 19.32 (b).

X-component = 46 cos 30° – 38.3 cos 30° = 6.64 A

Y-component = 57.5 – 46 sin 30° – 38.3 sin 30° = 15.3 A  2 26.64 15.3NI    16.71A

The power absorbed = 230 (57.5 + 46 + 38.3) = 32.610 W
Example 19.24. A 3-phase, 4-wire system supplies power at 400 V and lighting at 230 V. If

the lamps in use require 70, 84 and 33 A in each of the three lines, what should be the current in
the neutral wire ? If a 3-phase motor is now started, taking 200 A from the line at a power factor
of 0.2, what would be the current in each line and the neutral current ? Find also the total power
supplied to the lamps and the motor. (Elect. Technology, Aligarh Univ.)

Solution. The lamp and motor connections are shown in Fig. 19.33.

Fig. 19.33

When motor is not started
The neutral current is the vector sum of lamp currents. Again, splitting up the currents into

their X- and Y-components, we get
X-component = 84 cos 30° – 33 cos 30° = 44.2 A
Y-component = 70 – 84 sin 30° – 33 sin 30° = 11.5 A

∴           IN = + =44 2 1152 2. .  45.7 A

When motor is started
A 3-phase motor is a balanced load. Hence, when it is started, it will change the line currents

but being a balanced load, it contributes nothing to the neutral current. Hence, the neutral current
remains unchanged even after starting the motor.

Now, the motor takes 200 A from the lines. It means that each line will carry motor current
(which lags) as well as lamp current (which is in phase with the voltage). The current in each line
would be the vector of sum of these two currents.

Motor p.f. = 0.2 ; sin φ  = 0.9799 ... from tables
Active component motor current = 200 × 0.2 = 40 A

* Some writers disagree with this statement on the ground that according to Kirchhoff’s Current Law, at
any junction,   IN + IR + IY + IB = 0      ∴    IN = – (IR + IY + IB)
Hence, according to them, numerical value of IN is the same but its phase is changed by 180°.
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Reactive component of motor current = 200 × 0.9799 = 196 A

(i) Current in first line = ( )40 70 1962 2+ + =  224.8 A

(ii) Current in second line = 2 2(40 84) 196   232A

(iii) Current in third line  = + + =( )40 33 1962 2 210.6 A
Power supplied to lamps   = 230 (33 + 84 + 70) = 43,000 W

Power supplied to motor  = × × × =3 200 400 0 2.  27,700 W

19.11. Star and Delta connected Lighting Loads

In Fig. 19.34 (a) is shown a Y-connected lighting network in a three storey house. For such a
load, it is essential to have neutral wire in order to ensure uniform distribution of load among the
three phases despite random switching on and off or burning of lamps. It is seen from Fig. 1934 (a),

Fig. 19.34

that network supplies two flats on each floor of the three storey residence and there is balanced
distribution of lamp load among the three phases. There are house fuses at the cable entry into the
building which protect the two mains against short-circuits in the main cable. At the flat entry, there
are apartment (or flat) fuses in the single-phase supply which protect the two mains and other flats in
the same building from short-circuits in a given building. There is no fuse (or switch) on the neutral
wire of the mains because blowing of such a fuse (or disconnection of such a switch) would mean a
break in the neutral wire. This would result in unequal voltages across different groups of lamps in
case they have different power ratings or number. Consequently, filaments in one group would burn
dim whereas in other groups they would burn too bright resulting in their early burn-out.

The house-lighting wire circuit for Δ-connected lamps is shown in Fig. 19.34 (b).

19.12. Power Factor Improvement
The heating and lighting loads supplied from 3-phase supply have power factors, ranging
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from 0.95 to unity. But motor loads have usually low lagging power factors, ranging from 0.5 to
0.9. Single-phase motors may have as low power factor as 0.4 and electric wedding units have even
lower power factors of 0.2 or 0.3.

The power factor is given by
kWcos

kVA
     or   

kWkVA
cos

 
 

In the case of single-phase supply, kVA = 
VI

1000
or

VA

V
I

k= 1000
 ∴     I ∝ kVA

In the case of 3-phase supply kVA = 
3

1000

1000

3

V I
I

V
L L

L
L

or
kVA=

×
∴     I ∝ kVA

In each case, the kVA is directly proportional to current. The chief disadvantage of a low p.f.
is that the current required for a given power, is very high. This fact leads to the following
undesirable results.

(i) Large kVA for given amount of power
All electric machinery, like alternators, transformers,

switchgears and cables are limited in their current-carrying capacity
by the permissible temperature rise, which is proportional to I2.
Hence, they may all be fully loaded with respect to their rated kVA,
without delivering their full power. Obviously, it is possible for an
existing plant of a given kVA rating to increase its earning capacity
(which is proportional to the power supplied in kW) if the overall
power factor is improved i.e. raised.

(ii) Poor voltage regulation
When a load, having allow lagging power factor, is switched

on, there is a large voltage drop in the supply voltage because of the
increased voltage drop in the supply lines and transformers. This drop in voltage adversely affects
the starting torques of motors and necessitates expensive voltage stabilizing equipment for keeping
the consumer’s voltage fluctuations within the statutory limits. Moreover, due to this excessive
drop, heaters take longer time to provide the desired heat energy, fluorescent lights flicker and
incandescent lamps are not as bright as they should be. Hence, all supply undertakings try to
encourage consumers to have a high power factor.

Example 19.25. A 50-MVA, 11-kV, 3-φ alternator supplies full load at a lagging power factor
of 0.7. What would be the percentage increase in earning capacity if the power factor is increased
to 0.95 ?

Solution. The earning capacity is proportional to the power (in MW or kW) supplied by the
alternator.

MW supplied at 0.7 lagging = 50 × 0.7 = 35
MW supplied at 0.95 lagging = 50 × 0.95 = 47.5
increase in MW = 12.5
The increase in earning capacity is proportional to 12.5
∴ Percentage increase in earning capacity = (12.5/35) × 100 = 35.7

19.13. Power Correction Equipment
The following equipment is generally used for improving or correcting the power factor :
(i) Synchronous Motors (or capacitors)
These machines draw leading kVAR when they are over-excited and, especially, when they

Switchgear
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are running idle. They are employed for correcting the power factor in bulk and have the special
advantage that the amount of correction can be varied by changing their excitation.

(ii) Static Capacitors
They are installed to improve the power factor of a group of a.c. motors and are practically

loss-free (i.e. they draw a current leading in phase by 90°). Since their capacitances are not
variable, they tend to over-compensate on light loads, unless arrangements for automatic switching
off the capacitor bank are made.

(iii) Phase Advancers
They are fitted with individual machines.
However, it may be noted that the economical degree of correction to be applied in each case,

depends upon the tariff arrangement between the consumers and the supply authorities.
Example 19.26. A 3-phase, 37.3 kW, 440-V, 50-Hz induction motor operates on full load

with an efficiency of 89% and at a power factor of 0.85 lagging. Calculate the total kVA rating of
capacitors required to raise the full-load power factor at 0.95 lagging. What will be the
capacitance per phase if the capacitors are (a) delta-connected and (b) star-connected ?

Solution. It is helpful to approach such problems from the ‘power triangle’ rather than from
vector diagram viewpoint.

Motor power input P = 37.3/0.89 = 41.191 kW
Power Factor 0.85 (lag)

cos . : cos ( . ) . º ; tan tan . º .φ φ φ1 1
1

10 85 0 85 318 318 0 62= = = = =−

Motor kVAR1 = P tan . . .φ1 4191 0 62 25 98= × =

Power Factor 0.95 (lag)
Motor power input P = 41.91 kW ... as before
It is the same as before because capacitors are loss-free i.e. they do not absorb any power.

cos . . º ; tan . .φ φ2 20 95 18 2 18 2 0 3288= ∴ = ° =

Motor kVAR2 = P tan φ2  = 41.91 × 0.3288 = 13.79

The difference in the values of kVAR is due to the capacitors which supply leading kVAR to
partially neutralize the lagging kVAR of the motor.

Fig. 19.35

∴   leading kVAR supplied by capacitors is
= kVAR1 – kVAR2 = 25.98 – 13.79 = 12.19  ... CD in Fing. 19.35 (b)
Since capacitors are loss-free, their kVAR is the same as kVA
∴   kVA/capacitor = 12.19/3 = 4.063   ∴   VAR/capacitor = 4,063
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Fig. 19.36

(a) In Δ-connection, voltage across each capacitor is 440 V
Current drawn by each capacitor  IC = 4063/440 = 9.23 A

Now, I
V

X

V

C
VCc

c

= = =
1/ ω

ω

∴  C I Vc= = × × = × −/ . / .ω π9 23 2 50 440 66 8 10 6 F  = 66.8 μF

(b) In star connection, voltage across each capacitor is = 440 / 3  volt

Current drawn by each capacitor, 4063 16.0 A
440/ 3cI   

          c
c

VI VC
X

   or 16
440

3
2 50= × × ×π C

∴  C = 200.4 × 10–6F = 200.4 μF
Note. Star value is three times the delta value.

Example 19.27. If the motor of Example 19.24 is supplied through a cable of resistance
0.04 Ω  per core, calculate

 (i) the percentage reduction in cable Cu loss and
(ii) the additional balanced lighting load which the cable can supply when the capacitors are

connected.
Solution. Original motor kVA1 = P/cos φ1 = 41.91/0.85 = 49.3

Original line current, I
kVA

L1
1 1000

3 440

49 3 1000

3 440
64 49=

×
×

= ×
×

=.
. A

∴  Original Cu loss/conductor = 64.692 × 0.04 = 167.4 W
From Fig . 19.34, it is seen that the new kVA i.e.kVA2 when capacitors are connected is given

by        kVA2 = kW/cos φ2  = 41.91/0.95 = 44.12

New line current  IL2
44 120

3 440
57 89=

×
=,

. A

New Cu loss   = 5789 0 04 13412. . .× = W

(i) ∴  percentage reduction =
167 4 1341

167 4
100

. .

.

− × = 19.9

The total kVA which the cable can supply is 49.3 kVA. When
the capacitors are connected, the kVA supplied is 44.12 at a power
factor of 0.94 lagging. The lighting load will be assumed at unity
power factor. The kVA diagram is shown in Fig. 19.34. We will
tabulate the different loads as follows. Let the additional lighting
load be x kW.

Load kVA cosφ kW sinφ kVAR
Motor 49.3 0.85 lag 41.91 0.527 –25.98
Capacitors   12.19 0 lead 0 1.0 +12.19
Lighting – 1.0 x 0 0

1.91 + x) –13.79
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From Fig. 19.36 it is seen that
AF = 41.91 + x and EF = 13.79 AE = resultant kVA = 49.3
Also AF2 + EF2 = AE2 or (41.91 + x)2 + 13.792 = 49.32  ∴ x  = 5.42 kW
Example 19.28. Three impedance coils, each having a resistance of 20 Ω  and a reactance

of 15 Ω , are connected in star to a 400-V, 3- φ , 50-Hz supply. Calculate (i) the line current
(ii)  power supplied and (iii) the power factor.

If three  capacitors, each of the same capacitance, are connected in delta to the same supply
so as to form parallel circuit with the above impedance coils, calculate the capacitance of each
capacitor to obtain a resultant power factor of 0.95 lagging.

Solution.   2 2100 / 3 , 20 15 25ph phV V Z     

1 1cos / 20/25 0.8lag; 0.6 lagph phR Z      

where φ1  is the power factor angle of the coils.
When capacitors are not connected

(i) I ph = × =400 25 3 9 24/ . A ∴IL = 9.24 A

(ii) P V IL L= = × × ×3 3 400 9 24 0 81cos . .φ = 5.120 W
(iii) Power factor = 0.8 (lag)

∴ Motor VAR1 = 3 3 400 9 24 0 61V IL L sin . .φ = × × × = 3,840
When capacitors are connected
Power factor, cos φ2  = 0.95, φ2  = 18.2° ; tan 18.2° = 0.3288
Since capacitors themselves do not absorb any power, power remains the same i.e. 5,120 W

even whin capacitors are connected. The only thing that changes is the VAR.
Now VAR2 = P tan φ2  = 5120 × 0.3288 = 1684
Leading VAR supplied by the three capacitors is

= VAR1 – VAR2 = 3840 – 1684 = 2156 BD or CE in Fig 19.37 (b)
VAR/ Capacitor = 2156/3 = 719
For delta connection, voltage across each capacitor is 400 V ∴  Ic = 719/400 = 1.798 A

Fig. 19.37

Also I
V

I C
VC Cc = = ∴ = × × = × −

/
. / .

ω
ω π1798 50 400 14 32 10 6 F  = 14.32 μF
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19.14. Parallel Loads
A combination of balanced 3-phase loads connected in parallel may be solved by any one of

the following three methods :
1. All the given loads may be converted into equivalent Δ-loads and then combined together

according to the law governing parallel circuits.
2. All the given loads may be converted into equivalent Y-loads and treated as in (1) above.
3. The third method, which requires less work, is to work in terms of volt-amperes. The

special advantage of this approach is that voltameters can be added regardless of the kind of
connection involved. The real power of various loads can be added arithmetically and VARs may
be added algebraically so that total voltamperes are given by

VA W VAR S P Q= + = +2 2 2 2or

where P is the power in water and Q represents reactive voltamperes.
Example 19.29. For the power distribution system shown in Fig. 19.38, find
(a) total apparent power, power factor and magnitude of the total current IT without the

capacitor in the system
(b) the capacitive kVARs that must be supplied by C to raise the power factor of the system

to unity ;
(c) the capacitance C necessary to achieve the power correction in part (b) above
(d) total apparent power and supply current IT after the power factor correction.
Solution. (a) We will take the inductive i.e. lagging kVARs as negative and capacitive i.e.

leading kVARs as positive.
Total Q = – 16 + 6 – 12 = – 22 kVAR (lag); Total P = 30 + 4 + 36 = 70 kW

∴apparent power S = − +( )22 702 2  = 73.4 kVA; p.f. = cos φ  = P/S = 70/73.4 = 0.95

         S VI IT T= × = ×or 73 4 10 4003.  ∴  IT = 183.5 A
(b) Since total lagging kVARs are – 22, hence, for making the power factor unity, 22 leading

kVARs must be supplied by the capacitor to neutralize them. In that case, total Q = 0 and S = P
and p.f. is unity.

(c) If IC is the current drawn by the capacitor, then 22 × 103 = 400 × IC

Now, IC = V/XC = V Cω
= 400 2 50× × ×π C

∴ 320 10 400 (400 2 50 )C       ;

∴  C = 483 μF
(d) Since Q = 0,

hence, S = +10 702 2  = 70 kVA

Now, VIT = ×70 103 ;

IT = ×70 10 4003 /  = 175 A.
It would be seen that after the power correction, lesser amount of current is required to

deliver the same amount of real power to the system.
Example 19.30. A symmetrical 3-phase, 3-wire supply with a line voltage of 173 V supplies

two balanced 3-phase loads; one Y-connected with each branch impedance equal to (6 + j8) ohm
and the other Δ-connected with each branch impedance equal to (18 + j24) ohm. Calculate

(i) the magnitudes of branch currents taken by each 3-phase load

Fig. 19.38
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Fig. 19.40

(ii) the magnitude of the total line current and
(iii) the power factor of the entire load circuit
Draw the phasor diagram of the voltages and currents for the two loads.

(Elect. Engineering-I, Bombay Univ.)
Solution. The equivalent Y-load of the given Δ-load (Art.19.10) is = (18 + j24)/3 = (6 + j8) Ω.
With this, the problem now reduces to one of solving two equal Y-loads connected in parallel

across the 3-phase supply as shown in Fig. 19.39 (a). Phasor diagram for the combined load for
one phase only is given in Fig. 19.39 (b).

Combined load impedance
= ( ) /6 8 2 3 4+ = +j j

= 5 531∠ °.  ohm

          Vph = 173 3/  = 100 V

Let      Vph = ∠ °100 0

∴         I ph = ∠ °
∠ °

= ∠ − °100 0

5 531
20 531

.
.

Current in each load = 10 531∠ − .  A
(i) branch current taken by each load is 10 A; (ii) line current is 20 A;
(iii) combined power factor = cos 53.1° = 0.6 (lag).
Example 19.31. Three identical impedances of 30 30∠ ° ohms are connected in delta to a 3-

phase, 3-wire, 208 V volt abc system by conductors which have impedances of (0.8 + j 0.63) ohm.
Find the magnitude of the line voltage at the load end.

(Elect. Engg. Punjab Univ. May 1990)

Solution. The equivalent Zy, of the given ZΔ  is 30 30 3∠ /  = 10 30∠ °  = (8.86 + j5). Hence,
the load connections become as shown in Fig. 19.40.

Z j jan = + + +( . . ) ( . )0 8 0 6 8 86 5

      = 9 66 5 6 1116 301. . . .+ = ∠ °j

V Van ph= = 208 3/  = 120 V

Let Van = ∠ °120 0

∴             Ian = ∠ ° ∠ ° = ∠ − °120 0 16 301 10 75 301/11. . . .

Now,        Z jaa′ = + = ∠ °0 8 0 6 1 36 9. . .

Voltage drop on line conductors is
′ = ′ = ∠ − °× ∠ ° = ∠ ° = +V I Z jaa an aa 10 75 301 1 36 9 10 75 6 8 10 67 127. . . . . . .

∴ ′ = − ′ = + − +V V V j jan an aa ( ) ( . . )120 0 10 67 127  = 109.3 2.03° 
Example 19.32. A balanced delta-connected load having an impedance ZL = (300 + j210)

ohm in each phase is supplied from 400-V, 3-phase supply through a 3-phase line having an
impedance of Zs = (4 + j8) ohm in each phase. Find the total power supplied to the load as well
as the current and voltage in each phase of the load.

(Elect. Circuit Theory, Kerala Univ.)
Solution. The equivalent Y-load of the given Δ -load is

Fig. 19.39
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Fig. 19.41

= ( ) / ( )300 210 3 100 70+ = +j j Ω

Hence, connections become as shown in Fig. 19.41

 0Za (4 8) (100 70) 104 78 130 36.9j j j         

 0aV 400 / 3 231 ,V  

 0aI 231 0 /130 36.9 1.78 36.9         

Now, ′ = + = ∠ °Z ja0 4 8 8 94 63 4( ) . .

Line drop     V I Zaa aa aa 1.78 36.9 8.94 63.4 15.9 26.5 14.2 7.1j           

       0 0V V Va a aa (231 0) (14.2 7.1)j j    

         = ( . . ) .216 8 71 216 9 1 52− = ∠ − ° ′j

Phase voltage at load end, Va0 = 216.9 V
Phase current at load end, Ia0 = 1.78 A
Power supplied to load = 3 × 1.782 × 100 = 951 W

Incidentally, line voltage at load end Vac = 216.9 × 3  = 375.7 V*

Example 19.33. A star connected load having R = 42.6 ohms/ph and XL = 32 ohms/ph is
connected across 400 V, 3 phase supply, calculate:

 (i) Line current, reactive power and power loss
(ii) Line current when one of load becomes open circuited.

[Nagpur University, Summer 2001]
Solution.

(i) Z = 42.6 + j32

|Z| = 53.28 ohms, Impedance angle, θ  = cos
.

.
cos .− −F

HG
I
KJ =1 142 6

5328
0 80

  θ  = 36.9°
Line Current = phase current, due to star-connection

  = 
Voltage/phase 400 / 3

Impedance/phase 53.28
  = 4.336 amp

Due to the phase angle of 36.9° lagging,
Reactive Power for the three-phases

 = 3 Vph Iph sin φ = × × ×3 231 4 336 0 6. .  = 1803 VAR

Total Power-loss = 3 Vph Iph cos φ = × × ×3 231 4 336 0 8. .

= 2404 watts
(ii) One of the Loads is open-circuited.
The circuit is shown in Fig. 19.42 (b).

* It should be noted that total line drop is not the numerical sum of the individual line drops because they

are 120° out of phase with each other. By a laborious process V V V Vac ac aa ac= ′ − ′ − ′ .

Fig. 19.42 (a)
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Between A and B, the Line voltage of 400 V drives a
current through two “phase-impedances” in series.

Total Impedance between A and B = (42.6 + j 32) × 2 ohms
Hence, the line current I for the two Lines A and B

= 
400

2 5325× .
 = 3.754 amp

Note : Third Line ‘C’ does not carry any current.
Example 19.34. Three non-inductive resistances, each of 100 ohms, are connected in star to

a three-phase, 440-V supply. Three inductive coils, each of reactance 100 ohms connected in delta
are also connected to the supply. Calculate: (i) Line-currents, and (ii) power factor of the system

[Nagpur University, November 1998]
Solution. (a) Three resistances are connected in star. Each resistance is of 100 ohms and

254 – V appears across it. Hence, a current of 2.54 A flows through the resistors and the concerned
power-factor is unity. Due to star-connection,

Line-current = Phase-current = 2.54A
(b) Three inductive reactance are delta connected.
Line-Voltage  = Phase – Voltage = 440 V
Phase Current = 440/100  = 4.4 A
Line current   = 1.732 × 4.4 = 7.62 A
The current has a zero lagging power-factor.
Total Line Current = 2.54 - j 7.62 A

                   = 8.032 A, in each of the lines.
       Power factor = 2.54/8.032 = 0.32 Lag.

Fig. 19.43

Example 19.35. The delta-connected generator of Fig 19.44 has the voltage; VRY = 220
/0°,  VYB=220 /–120° and VBR = 220 /–240° Volts.

The load is balanced and delta-connected. Find:
(a) Impedance per phase, (b) Current per phase, (c) Other line – currents IY and IB.

[Nagpur University, November 1997]
Solution. Draw phasors for voltages as mentioned in the data. VRY naturally becomes a

reference-phasor, along which the phasor IR also must lie, as shown in Fig. 19.44 (b) & (c). IR is
the line voltage which is related to the phase-currents IRY and – IBR. In terms of magnitudes,

|IRY| = |IBR| = |IR|/ 3  = 10 3/  = 5.8 Amp
Thus, IRY leads VRY by 30°. This can take place only with a series combination of a resistor

and a capacitor, as the simplest impedance in each phase

Fig. 19.42 (b) One phase open
           circuited
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Fig 19.44 (a)

Fig. 19.44 (b)                  Fig. 19.44 (c)

(a) |Z| = 220/5.8 = 38.1 ohms
Resistance per phase = 38.1 × cos 30° = 33 ohms
Capacitive Reactance/phase = 38.1 × sin 30° = 19.05 ohms
(b) Current per phase = 5.8 amp, as calculated above.
(c) Otherline currents: Since a symmetrical three phase system is being dealt with, three

currents have a mutual phase-difference of 120°. Hence

IR = 10 ∠ 0° as given, IY = 10 ∠  – 120° amp; IB = 10 ∠ – 240° amp.
Example 19.36. A balanced 3-phase star-connected load of 8 + j 6 ohms per phase is

connected to a three-phase 230 V supply. Find the line-current, power-factor, active power,
reactive-power, and total volt-amperes.

   [Rajiv Gandhi Technical University, Bhopal, April 2001]
Solution. When a statement is made about three–phase voltage, when not mentioned

otherwise, the voltage is the line-to-line voltage. Thus, 230 V is the line voltage, which means, in
star-system, phase-voltage is 230/1.732, which comes to 132.8 V.

|Z| = 8 62 2+  = 10 ohms

Line current = Phase current
= 132.8/10 = 13.28 amp
Power – factor = R/Z = 0.8, Lagging
Total Active Power = P = 1.732 × Line Voltage ×

Line Current × P.f.
Or = 3. Phase Voltage × Phase-current × P.f
= 3 × 132.8 × 13.28 × 0.8 = 4232 watts Fig. 19.45
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Total Reactive Power = Q

= 3 × Phase-voltage × Phase-current × sin φ

= 3 × 132.8 × 13.28 × 0.60 = 3174 VAR

Total Volt-amps = S = P Q2 2+  = 5290 VA

Or S = 3 230 1328× × .  = 5290 VA

Example 19.37. A balanced three-phase star connected load of 100 kW takes a leading
current of 80 amp, when connected across a three-phase 1100 V, 50 Hz, supply. Find the circuit
constants of the load per phase. [Nagpur University, April 1996]

Solution. Voltage per phase = 1100/1.732 = 635 V
Impedance = 635/80 = 7.94 ohms.
Due to the leading current, a capacitor exists.
Resistance R can be evaluated from current and power consumed
3 I2 R = 100 × 1000, giving R = 5.21 ohms
Xc = (7.942 – 5.212)0.5 = 6 ohms
At 50 Hz, C = 1/(314 × 6) = 531 microfarads.

Tutorial Problem No. 19.1

1. Each phase of a delta-connected load comprises a resistor of 50 Ω  and capacitor of 50 μ F in
series. Calculate (a) the line and phase currents (b) the total power and (c) the kilovoltamperes when the
load is connected to a 440-V, 3-phase, 50-Hz supply. [(a) 9.46 A; 5.46 A (b) 4480 W (c) 7.24 kVA]

2. Three similar-coils, A, B and C are available. Each coil has 9 Ω resistance and 12 Ω reactance.
They are connected in delta to a 3-phase, 440-V, 50-Hz supply. Calculate for this load:

(a) the line current (b) the power factor
(c) the total kilovolt-amperes (d) the total kilowatts
If the coils are reconnected in star, calculate for the new load the quantities named at (a), (b); (c) and

(d) above. [50.7 A; 0.6; 38.6 kVA; 23.16 kW; 16.9 A; 0.6; 12.867 kVA; 7.72 kW]
3. Three similar choke coils are connected in star to a 3-phase supply. If the line currents are 15 A,

the total power consumed is 11 kW and the volt-ampere input is 15 kVA, find the line and phase voltages,
the VAR input and the reactance and resistance of each coil.

[577.3 V; 333.3 V; 10.2 kVAR; 15.1 Ω; 16.3 Ω]
4. The load in each branch of a delta-connected balanced 3-φ circuit consists of an inductance of

0.0318 H in series with a resistance of 10 Ω. The line voltage is 400 V at 50 Hz. Calculate (i) the line
current and (ii) the total power in the circuit. [(i) 49 A (ii) 24 kW] (London Univ.)

5. A 3-phase, delta-connected load, each phase of which has R = 10 Ω and X = 8 Ω, is supplied from
a star-connected secondary winding of a 3-phase transformer each phase of which gives 230 V. Calculate

(a) the current in each phase of the load and in the secondary windings of the transformer
(b) the total power taken by the load
(c) the power factor of the load. [(a) 31.1 A; 54 A (b) 29 kW (c) 0.78]
6. A 3-phase load consists of three similar inductive coils, each of resistance 50 Ω and inductance

0.3 H. The supply is 415 V, 50 Hz, Calculate (a) the line current (b) the power factor and (c) the total
power when the load is (i) star-connected and (ii) delta-connected.

[(i) 2.25 A, 0.47 lag, 762 W (ii) 6.75 A, 0.47 lag, 2280 W] (London Univ.)
7. Three 20 Ω non-inductive resistors are connected in star across a three phase supply the line

voltage of which is 480 V. Three other equal non-inductive resistors are connected in delta across the same
supply so as to take the same-line current. What are the resistance values of these other resistors and what
is the current- flowing through each of them? [60 ΩΩΩΩΩ; 8A] (Sheffield Univ. U.K.)
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8. A 415-V, 3-phase, 4-wire system supplies power to three non-inductive loads. The loads are
25 kW between red and neutral, 30 kW between yellow and neutral and 12 kW between blue and neutral.

Calculate (a) the current in each-line wire and (b) the current in the neutral conductor.
[(a) 104.2 A, 125 A, 50 A (b) 67 A] (London Univ.)

9. Non-inductive loads of 10, 6 and 4 kW are connected between the neutral and the red, yellow and
blue phases respectively of a three-phase, four-wire system. The line voltage is 400 V. Find the current in
each line conductor and in the neutral. [(a) 43.3 A, 26A, 173. A, 22.9] (App. Elect. London Univ.)

10. A three-phase, star-connected alternator supplies a delta-connected load, each phase of which
has a resistance of 20 Ω and a reactance of 10 Ω. Calculate (a) the current supplied by the alternator (b) the
output of the alternator in kW and kVA, neglecting the losses in the lines between the alternator and the
load. The line voltage is 400 V. [(a) 30.95 A (b) 19.2 kW, 21.45 kVA]

11. Three non-inductive resistances, each of 100 Ω , are connected in star to 3-phase, 440-V supply.
Three equal choking coils each of reactance 100 Ω are also connected in delta to the same supply.
Calculate:

(a) line current (b) p.f. of the system.         [(a) 8.04 A (b) 0.3156] (I.E.E. London)
12. In a 3-phase, 4-wire system, there is a balanced 3-phase motor load taking 200 kW at a power

factor of 0.8 lagging, while lamps connected between phase conductors and the neutral take 50, 70 and 100
kW respectively. The voltage between phase conductors is 430 V. Calculate the current in each phase and
in the neutral wire of the feeder supplying the load.

[512 A, 5.87 A, 699 A; 213.3 A] (Elect. Power, London Univ.)
13. A 440-V, 50-Hz induction motor takes a line current of 45 A at a power factor of 0.8 (lagging).

Three Δ-connected capacitors are installed to improve the power factor to 0.95 (lagging). Calculate the
kVA of the capacitor bank and the capacitance of each capacitor. [11.45 kVA, 62.7 μμμμμF] (I.E.E. London)

14. Three resistances, each of 500 Ω, are connected in star to a 400-V, 50-Hz, 3-phase supply. If
three capacitors, when connected in delta to the same supply, take the same line currents, calculate the
capacitance of each capacitor and the line current. [2.123 μμμμμ F, 0.653 A] (London Univ.)

15. A factory takes the following balanced loads from a 440-V, 3-phase, 50-Hz supply:
(a) a lighting load of 20 kW (b) a continuous motor load of 30 kVA at 0.5 p.f. lagging.
(c) an intermittent welding load of 30 kVA at 0.5 p.f. lagging.
Calculate the kVA rating of the capacitor bank required to improve the power factor of loads (a) and

(b) together to unity. Give also the value of capacitor required in each phase if a star-connected bank is
employed.

What is the new overall p.f. if, after correction has been applied, the welding load is switched on.
[30 kVAR; 490μ  F; 0.945 kg]

16. A three-wire, three-phase system, with 400 V between the line wires, supplies a balanced delta-
connected load taking a total power of 30 kW at 0.8 power factor lagging. Calculate (i) the resistance and
(ii) the reactance of each branch of the load and sketch a vector diagram showing the line voltages and line
currents. If the power factor of the system is to be raised to 0.95 lagging by means of three delta-connected
capacitors, calculate (iii) the capacitance of each branch assuming the supply frequency to be 50 Hz.

[(i) 10.24 A (ii) 7.68 ΩΩΩΩΩ (iii) 83.2 μμμμμF] (London Univ.)

19.15. Power Measurement in 3-phase Circuits
Following methods are available for measuring power in a 3-phase load.
(a) Three Wattmeter Method
In this method, three wattmeters are inserted one in each phase and the algebraic sum of their

readings gives the total power consumed by the 3-phase load.
(b) Two Wattmeter Method

(i) This method gives true power in the 3-phase circuit without regard to balance or wave
form provided in the case of Y-connected load. The neutral of the load is isolated from
the neutral of the source of power. Or if there is a neutral connection, the neutral wire
should not carry any current. This is possible only if the load is perfectly balanced and
there are no harmonics present of triple frequency or any other multiples of that
frequency.
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(ii) This method can also be used for 3-phase, 4-wire system in which the neutral wire
carries the neutral current. In this method, the current coils of the wattmeters are
supplied from current transformers inserted in the principal line wires in order to get
the correct magnitude and phase differences of the currents in the current coils of the
wattmeter, because in the 3-phase, 4-wire system, the sum of the instantaneous currents
in the principal line wires is not necessarily equal to zero as in 3-phase 3-wire system.

(c) One Wattmeter Method
In this method, a single wattmeter is used to obtain the two readings which are obtained by

two wattmeters by the two-wattmeter method. This method can, however, be used only when the
load is balanced.

19.16. Three Wattmeter Method
A wattmeter consists of (i) a low resistance current coil which is inserted in series with the

line carrying the current and (ii) a high resistance pressure coil which is connected across the two
points whose potential difference is to be measured.

A wattmeter shows a reading which is proportional to the product of the current through its
current coil, the p.d. across its potential or pressure coil and cosine of the angle between this
voltage and current.

As shown in Fig. 19.46 in this method three wattmeters are inserted in each of the three
phases of the load whether Δ-connected or Y-connected. The current coil of each wattmeter carries
the current of one phase only and the pressure coil measures the phase-voltage of this phase.
Hence, each wattmeter measures the power in a single phase. The algebraic sum of the readings of
three wattmeters must give the total power in the load.

Fig. 19.46

The difficulty with this method is that under ordinary conditions it is not generally feasible
to break into the phases of a delta-connected load nor is it always possible, in the case of a
Y-connected load, to get at the neutral point which is required for connections as shown in Fig.
19.47 (b). However, it is not necessary to use three wattmeters to measure power, two wattmeters
can be used for the purpose as shown below.

19.17. Two Wattmeter Method-Balanced or Unbalanced Load
As shown in Fig. 19.41, the current coils of the two wattmeters are inserted in any two lines

and the potential coil of each joined to the third line. It can be proved that the sum of the
instantaneous powers indicated by W1 and W2 gives the instantaneous power absorbed by the three
loads L1, L2 and L3. A star-connected load is considered in the following discussion although it can
be equally applied to Δ-connected loads because a Δ-connected load can always be replaced by an
equivalent Y-connected load.

Now, before we consider the currents through and p.d. across each wattmeter, it may be
pointed out that it is important to take the direction of the voltage through the circuit the same
as that taken for the current when establishing the readings of the two wattmeters.
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Fig. 19.47

Instantaneous current through W1= iR
p.d. across W1 = eRB = eR–eB
p.d. across power read by W1 = iR (eR–eB)
Instantaneous current through W2= iY
Instantaneous p.d. across W2 = eYB = (eY–eB)
Instantaneous power read by W2 = iY (eY–eB)

∴  W W e e e i e e i e i e e i iR R B Y Y B R R Y Y B R Y1 2+ = − + − = + − +( ) ( ) ( )

Now,  i i iR Y B+ +  = 0 ... Kirchhoff’s Current Law

∴        i i iR Y B+ = −

or W W i e i e i e p p pR R Y y B B1 2 1 2 3+ = + + = + +. . .

where p1 is the power absorbed by load L1, p2 that absorbed by L2 and p3 that absorbed by L3

∴ W W1 2+  = total power absorbed
The proof is true whether the load is balanced or unbalanced. If the load is Y-connected, it

should have no neutral connection (i.e. 3 – φ , 3-wire connected) and if it has a neutral connection
(i.e. 3– φ , 4-wire connected) then it should be exactly balanced so that in each case there is no
neutral current iN  otherwise Kirchoff’s current law will give i i i iN R y B+ + +  = 0.

We have considered instantaneous readings, but in fact, the moving system of the wattmeter,
due to its inertia, cannot quickly follow the variations taking place in a cycle, hence it indicates the
average power.

∴    1 2
0 0

1 1T T
R RB Y YBW W i e dt i e dt

T T
     

19.18.  Two Wattmeter Method–
Balanced Load

If the load is balanced, then power factor
of the load can also be found from the two
wattmeter readings. The Y-connected load in
Fig. 19.47 (b) will be assumed inductive. The
vector diagram for such a balanced Y-connected
load is shown in Fig. 19.48. We will now
consider the problem in terms of r.m.s. values
instead of instantaneous values. Fig. 19.48
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Let VR, VY and VB be the r.m.s. values of the three phase voltages and IR, IY and IB the r.m.s.
values of the currents. Since these voltages and currents are assumed sinusoidal, they can be
represented by vectors, the currents lagging behind their respective phase voltages by φ .

Current through wattmeter W1 [Fig. 19.47 (b)] is = IR.
P.D. across voltage coil of W1 is

V V VRB R B= − ... vectorially

This VRB is foundby compounding VR and VB reversed as shown in Fig. 19.42. It is seen that
phase difference between VRB and IR = (30° – φ ).

∴ Reading of W1 = IR VRB cos (30° – φ )
Similarly, as seen from Fig. 19.47 (b). Current through W2 = IY

P.D. across W V V VYB Y B2 = = − ... vectorially
Again, VYB is found by compounding VY and VB reversed as shown in Fig. 19.48. The angle

between IY and VYB is (30° + φ ). Reading of W2 = IYVYB cos (30° +  φ )
Since load is balanced, VRB = VYB = line voltage VL; IY = IR = line current, IL

∴   W V I W V IL L L L1 230 30= °− = °+cos( ) cos( )Φ and φ

∴ W W V I V IL L L L1 2 30 30+ = °− + °+cos( ) (cos( )φ φ

= V IL L [cos cos sin sin cos cos sin sin ]30 30 30 30° + ° + ° − °φ φ φ φ

= V I V IL L L L( cos cos ) cos2 30 3° =φ φ  = total power in the 3-phase load

Hence, the sum of the two wattmeter readings gives the total power consumption in the
3-phase load.

It should be noted that phase sequence of RYB has been assumed in the above discussion.
Reversal of phase sequence will interchange the readings of the two wattmeters.

19.19. Variations in Wattmeter Readings
It has been shown above that for a lagging power factor

W V I W V IL L L L1 230 30= °− = °+cos( ) cos( )ϕ φand

From this it is clear that individual readings of the wattmeters not only depend on the load
but upon its power factor also. We will consider the following cases:

(a) When φ  = 0 i.e. power factor is unity (i.e. resistive load) then,

     W W V IL L1 2 30= = °cos

Both wattmeters indicate equal and positive i.e. up-scale readings.
(b) When φ  = 60° i.e. power factor = 0.5 (lagging)
Then W2 = VLIL cos (30° + 60°) = 0. Hence, the power is measured by W1 alone.
(c) When 90° > φ  > 60° i.e. 0.5 > p.f. > 0, then W1 is

still positive but reading of W2 is reversed because the phase
angle between the current and voltage is more than 90°. For
getting the total power, the reading of W2 is to be subtracted
from that of W1.

Under this condition, W2 will read ‘down scale’ i.e.
backwards. Hence, to obtain a reading on W2 it is necessary

φ

φ

0 60 90

1 0 5 0

0

1

2
1 2 1 2

° ° °

+
+
=

−
=

cos .

W

W
W W W W

ve +ve +ve

ve ve
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to reverse either its pressure coil or current coil, usually the
All readings taken after reversal of pressure coil are to be taken as negative.
(d) When φ = 90° (i.e. pure inductive or capacitive load), then

W V I V IL L L L1 30 90 30= °− ° = °cos( ) sin ;

W V I V IL L L L2 30 90 30= °+ ° = − °cos( ) sin

As seen, the two readings are equal but of opposite sign.

∴ W W1 2 0+ =

The above facts have been summarised in the above table for a lagging power factor.

19.20. Leading Power Factor*

In the above discussion, lagging angles are taken positive. Now, we will see how wattmeter
readings are changed if the power factor becomes leading. For φ  = + 60° (lag), W2 is zero. But
for φ  = – 60° (lead), W1 is zero. So we find that for angles of lead, the reading of the two
wattmeters are interchanged. Hence, for a leading power factor.

W V IL L1 30= °+cos( )φ  and W V IL L2 30= °−cos( )φ

19.21. Power Factor–Balanced Load

In case the load is balanced (and currents and voltages are sinusoidal) and for a lagging
power factor:

            W W V I V I V IL L L L L L1 2 30 30 3+ = °− + °+ =cos( ) cos( ) cosφ φ φ ... (i)

Similarly W W V I V IL L L L1 2 30 30− = °− − °+cos( ) cos( )φ φ

                   = V I V IL L L L( sin / ) sin2 1 2× × =φ φ ... (ii)

Dividing (ii) by (i), we have tan 1 2

1 2

3( )
( )

W W
W W

   
 

**
... (iii)

Knowing tan φ  and hence φ , the value of power factor cos φ  can be found by consulting
the trigonometrical tables. It should, however, be kept in mind that if W2 reading has been taken
after reversing the pressure coil i.e. if W2 is negative, then the above relation becomes

tanφ = −
−
+

F
HG

I
KJ3 1 2

1 2

W W

W W ... Art 19.22

tan
( )

( )
φ =

− −
+ −

=
+
−

3 31 2

1 2

1 2

1 2

W W

W W

W W

W W
Obviously, in this expression, only numerical values of W1 and W2 should be substituted. We

may express power factor in terms of the ratio of the two wattmeters as under:

Let   smaller reading

larger reading
= =

W

W
r2

1

* For a leading p.f., conditions are just the opposite of this. In that case, W1 reads negative (Art. 19.22).
** For a leading power factor, this expression becomes

tanφ = −
−
+

F
HG

I
KJ3 1 2

1 2

W W

W W ... Art 19.22
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Fig. 19.51

Fig. 19.49

Fig. 19.50

Then from equation (iii) above,

tan
[ ( / )]

( / )

( )
φ =

−
+

=
−

+
3 1

1

3 1

1
2 1

2 1

W W

W W

r

r

Now sec tan2 21φ φ= +

or 
1

1
2

2

cos
tan

φ
φ= +

∴  cos
tan

φ
φ

=
+

1

1 2

         = 1

1 3
1

1

2

+ −
+
F
HG
I
KJ

r

r

         = 1

2 1 2

+

− +

r

r r
If r is plotted against cos φ , then a curve called watt-ratio curve is obtained as shown in Fig.

19.49.

19.22. Balanced Load – leading power factor
In this case, as seen from Fig. 19.50

    W V IL L1 30= +cos( )φ

and   W V IL L2 30= −cos( )φ

∴  W W V IL L1 2 3+ = cosφ – as found above

  W W V IL L1 2− = − sin φ

∴       tan
( )

( )
φ = −

−
+

3 1 2

1 2

W W

W W

Obviously, if φ  > 60°, then phase angle between VRB and IR becomes more than 90°. Hence,
W1 reads ‘down-scale’ i.e. it indicates negative reading. However, W2 gives positive reading even
in the extreme case when φ  = 90°.

19.23. Reactive Voltamperes with Two Wattmeters

We have seen that tan
( )

( )
φ =

−
+

3 1 2

1 2

W W

W W
Since the tangent of the angle of lag between phase current and

phase voltage of a circuit is always equal to the ratio of the reactive
power to the active power (in watts), it is clear that 3 (W1 – W2)
represents the reactive power (Fig. 19.51). Hence, for a balanced load, the reactive power is given
by 3  times the difference of the readings of the two wattmeters used to measure the power for a
3-phase circuit by the two wattmeter method. It may also be proved mathematically a follows:
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= 3 3 30 301 2( ) [ cos( ) cos ( )]W W V I V IL L L L− = °− − °−φ φ

= 3 30 30 30 30V IL L (cos cos sin sin cos cos sin sin )° + ° − ° + °φ φ φ φ

= 3V IL L sinφ

19.24. Reactive Voltamperes with One Wattmeter
For this purpose, the wattmeter is connected as shown in Fig. 19.52 (a) and (b). The pressure

coil is connected across Y and B lines whereas the current coil is included in the R line. In Fig.
19.48 (a), the current coil is
connected between terminals A and
B whereas pressure coil is connected
between terminals C and D.
Obviously, current flowing through
the wattmeter is IR and p.d. is VYB.
The angle between the two, as seen
from vector diagram of Fig. 19.48, is
(30 + 30 + 30 – φ ) = (90 – φ )

Hence, reading of the wattmeter is W V I V IYB R YB R= − =cos( ) sin90 φ φ
For a balanced load, VYB equals the line voltage VL and IR equals the line current IL, hence

W V IL L= sin φ

We know that the total reactive voltamperes of the load are Q V IL L= 3 sin .φ

Hence, to obtain total VARs, the wattmeter reading must be multiplied by a factor of 3 .

19.25. One Wattmeter Method
In this case, it is possible to apply two-wattmeter method by means of one wattmeter without

breaking the circuit. The current coil is connected in any one line and the pressure coil is
connected alternately between this and the other two lines
(Fig. 19.53). The two readings so obtained, for a balanced
load, correspond to those obtained by normal two wattmeter
method. It should be kept in mind that this method is not of
as much universal application as the two wattmeter method
because it is restricted to fairly balanced loads only.
However, it may be conveniently applied, for instance,
when it is desired to find the power input to a factory motor
in order to check the load upon the motor.

It may be pointed out here that the two wattmeters
used in the two-wattmeter method (Art. 19.17) are usually

combined into a single instrument in the case of switchboard wattmeter which is then known as a
polyphase wattmeter. The combination is affected by arranging the two sets of coils in such a way
as to operate on a single moving system resulting in an indication of the total power on the scale.

19.26. Copper Required for Transmitting Power under Fixed Conditions
The comparison between 3-phase and single-phase systems will be done on the basis of a

fixed amount of power transmitted to a fixed distance with the same amount of loss and at the same
maximum voltage between conductors. In both cases, the weight of copper will be directly

Fig. 19.52

Fig. 19.53
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proportional to the number of wires (since the distance is fixed) and inversely proportional to the
resistance of each wire. We will assume the same power factor and same voltage.

P VI P VI1 1 3 33= =cos cosφ φand
where I1 = r.m.s. value of current in 1-phase system

I3 = r.m.s. value of line current in 3-phase system
 P P1 2=  ∴ VI VI1 33cos cosφ φ=  ∴ I I1 33=

also I R I R
R

R

I

I
1
2

1 2
3

3
1

3

3
2

1
2

2 3
3

2
× = × =or

Substituting the value of I1, we get 
R

R

I

I
1

3

3
2

3
2

3

3 2

1

2
=

×
=

∴ copper3 phase

copper1 phase

No. of wires3 phase

No. of wires1 phase

−
−

= −
−

× = × =
R

R
1

3

3

2

1

2

3

4
Hence, we find that for transmitting the same amount of power over a fixed distance with a

fixed line loss, we need only three-fourths of the amount of copper that would be required for a
single phase or to put it in another way, one-third more copper is required for a 1-phase system
than would be necessary for a three-phase system.

Example 19.38. Phase voltage and current of a star-connected inductive load is 150 V and
25 A. Power factor of load is 0.707 (lag). Assuming that the system is 3-wire and power is
measured using two wattmeters, find the readings of wattmeters.

(Elect. Instrument & Measurements, Nagpur Univ. 1993)

Solution.          150V; 150 3V;ph L ph LV V I I     = 25 A

         Total power = 3 3 150 3 25 0 707V IL L cos .φ = × × × ×  = 7954 W

∴    W W1 2+  = 7954 W ... (i)

       cos . ; cos ( . ) ; tanφ φ= = = ° °=−0 707 0 707 45 45 11

Now, for a lagging power factor, tan ( ) / ( )φ = − +3 1 2 1 2W W W W  or 1 = 3 79541 2( ) /W W−
∴  ( )W W1 2−  = 4592 W ... (ii)
From (i) and (ii) above, we get, W1 = 6273 W; W2 = 1681 W.
Example 19.39. In a balanced 3-phase 400-V circuit, the line current is 115.5 A. When

power is measured by two wattmeter method, one meter reads 40 kW and the other zero. What is
the power factor of the load? If the power factor were unity and the line current the same, what
would be the reading of each wattmeter?

Solution. Since W2 = 0, the whole power is measured by W1. As per Art. 19.18, in such a
situation, p.f. = 0.5. However, it can be calculated as under.

Since total power is 40 kW, ∴  40,000 = 3 400 115.5 cos ; cos 0.5      
If the power factor is unity with line currents remaining the same, we have

        tan
( )

( )
φ =

−
+

3 1 2

1 2

W W

W W  = 0 or W W1 2=

Also, ( ) .W W1 2 3 400 115 5 1+ = × × ×  = 80000 W = 80 kW
As per Art. 19.19, at unity p.f., W1 = W2. Hence, each wattmeter reads = 80/2 = 40 kW.
Example 19.40. The input power to a three-phase motor was measured by two wattmeter

method. The readings were 10.4 KW and – 3.4 KW and the voltage was 400 V. Calculate (a) the
power factor (b) the line current. (Elect. Engg. A.M.Ae, S.I. June 1991)

Solution. As given in Art. 19.21, when W2 reads negative, then we have

tan ( ) / ( )φ = + −3 1 2 1 2W W W W . Substituting numerical values of W1 and W2, we get
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tan ( . . ) / ( . . ) . ; tan ( . ) .φ φ= + − = = = °−3 10 4 3 4 10 4 3 4 197 197 6311

(a) p.f. = cos cos .φ = °631  = 0.45 (lag)
(b) W = 10.4 – 3.4 = 7 KW = 7,000 W
 7000 3 400 0 45= × ×I IL L. ;  = 22.4 A
Example 19.41. A three-phase, three-wire, 100-V, ABC system supplies a balanced delta

connected load with impedance of 20 45∠ ° ohm.
(a) Determine the phase and line currents and draw the phase or diagram (b) Find the

wattmeter readings when the two wattmeter method is applied to the system.
(Elect. Machines, A.M.I.E. Sec B.)

Solution. (a) The phasor diagram is shown in Fig. 19.54 (b).
Let VAB = 100 0∠ ° . Since phase sequence is ABC, VBC = 100 120∠ − °  and VCA = 100° 120  

Phase current I
V

ZAB
AB

AB

= = ∠ °
∠ °

= ∠ − °100 0

20 45
5 45

   I
V

Z
I

V

ZBC
BC

BC
CA

CA

CA

= = ∠ − °
∠ °

= ∠ − ° = = ∠ °
∠ °

= ∠ °100 120

20 45
5 165

100 120

20 45
5 75,

Fig. 19.54
Applying KCL to junction A, we have

 I I I I I IA CA AB A AB CA+ − = = −0 or

∴  Line current IA = ∠ − °− ∠ ° = ∠ − °5 45 5 75 8 66 75.
Since the system is balanced, IB will lag IA by 120° and IC will lag IA by 240°.
∵IB = 8 66 75 120 8 66 195 8 66 75 240 8 66 315 8 66. ( ) . ; . ( ) . .∠ °− ° = ∠ − ° = ∠ − °− ° = ∠ − ° = ∠ °IC 45

(b) As shown in Fig. 19.54 (b), reading of wattmeter W1 is W1 = VAC  IC cos ϕ . Phasor VAC is
the reverse of phasor VCA. Hence, VAC is the reverse of phasor VCA. Hence, VAC  lags the reference
vector by 60° whereas IA lags by 75°. Hence, phase difference between the two is (75° – 60°) =
15°

∴  W1 = 100 × 8.66 × cos 15° = 836.5 W
Similarly W V IBC B2 100 8 66 75= = × × °cos . cosφ = 224.1 W

∴  W W1 2+  = 836.5 + 224.1 = 1060.6 W
Resistance of each delta branch = 20 cos 45° = 14.14 Ω
Total power consumed = 3 I2R = 3 × 52 × 14.14 = 1060.6 W
Hence, it proves that the sum of the two wattmeter readings gives the total power consumed.
Example 19.42. A 3-phase, 500-V motor load has a power factor of 0.4 Two wattmeters

connected to measure the power show the input to be 30 kW. Find the reading on each
instrument. (Electrical Meas., Nagpur Univ. 1991)
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Solution. As seen from Art. 19.21

tan
( )

φ =
−

+
3 1 2

1 2

W W

W W
... (i)

Now, cos . ; cos ( . ) . ;φ φ= = = °−0 4 0 4 66 61  tan 66.6° = 2.311
W W1 2 30+ = ... (ii)

Substituting these values in equation (i) above, we get

   2 311
3

30
1 2.

( )
=

−W W
 ∴ W W1 2 40− = ... (iii)

From Eq. (ii) and (iii), we have W1 = 45 kW and W2 = – 5 kW
Since W2 comes out to be negative, second wattmeter reads ‘down scale’. Even otherwise it

is obvious that p.f. being less than 0.5, W2 must be negative (Art. 19.19)
Example 19.43. The power in a 3-phase circuit is measured by two wattmeters. If the total

power is 100 kW and power factor is 0.66 leading, what will be the reading of each wattmeter?
Give the connection diagram for the wattmeter circuit. For what p.f. will one of the wattmeter read
zero?

Solution. φ φ= = ° =−cos ( . ) . ; tan .1 0 66 487 11383
Since p.f. is leading,

∴  tan
( )

φ = −
−

+
3 1 2

1 2

W W

W W  ∴ 1.1383 = 1 23( ) /100W W  

∴  W1 – W2 = – 65.7 and W1 + W2 = 100 ∴  W1 = 17.14 kW; W2 = 82.85 kW
Connection diagram is similar to that shown in Fig. 19.47 (b). One of the wattmeters will read

zero when p.f. = 0.5
Example 19.44. Two wattmeters are used for

measuring the power input and the power factor of an
over-excited synchronous motor. If the readings of the
meters are (– 2.0 kW) and (+ 7.0 kW) respectively,
calculate the input and power factor of the motor.

(Elect. Technology, Punjab Univ., June, 1991)
Solution. Since an over-excited synchronous motor

runs with a leading p.f., we should use the relationship
derived in Art. 19.22.

tan
( )

φ =
−

+
3 1 2

1 2

W W

W W
Moreover, as explained in the same article, it is W1 that gives negative reading and not W2.
Hence,   W1 2= − kW

∴       tan
( )

.φ = −
− −

− +
= × =

3 2 7

2 7
3

9

5
31176

∴     φ = = °−tan ( . ) .1 31176 712  (lead)

∴       cos cos .φ = °712  = 0.3057 (lead) and
 Input = W W1 2 2 7+ = − +  = 5 kW

Example 19.45. A 440-V, 3-phase, delta-connected induction motor has an output of 14.92
kW at a p.f. of 0.82 and efficiency 85%. Calculate the readings on each of the two wattmeters
connected to measure the input. Prove any formula used.

If another star-connected load of 10 kW at 0.85 p.f. lagging is added in parallel to the motor,
what will be the current draw from the line and the power taken from the line?

(Elect. Technology-I, Bombay Univ.)

Fig. 19.55
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Solution. Motor input = 14,920/0.85 = 17,600 W ∴  W W1 2+  = 17.6 kW ... (i)

cos . ; . , tan . .φ φ= = ° °=0 82 34 9 34 9 0 6976 ;  0.6976 = 3
17 6
1 2W W−

.
∴     W W1 2−  = 7.09 kW ... (ii)
From (i) and (ii) above, we get W1 = 12.35 kW and W2 = 5.26 kW

Motor kVA, Sm
m

= = =motor kW

cos

.

.
.

φ
17 6

0 82
2146  ∴Sm = 21.46 ∠ – 34.9° = (17.6 – j 12.28) kVA

Load p.f. = 0.85 ∴ φ = = °−cos ( . ) .1 0 85 318 ; Load kVA, SY = 10/0.85 = 11.76

∴ SY j= ∠ − ° = −1176 318 10 6 2. . ( . )  kVA
Combined kVA,S = Sm + SY = (27.6 – j 18.48) = 32.2 ∠  – 33.8° kVA

I
S

V
= =

×
×3

332 10

3 440

3

.

.
 = 43.56 A

Power taken    = 27.6 kW
Example 19.46. The power input to a synchronous motor is measured by two wattmeters

both of which indicate 50 kW. If the power factor of the motor be changed to 0.866 leading,
determine the readings of the two wattmeters, the total input power remaining the same. Draw the
vector diagram for the second condition of the load. (Elect. Technology, Nagpur Univ. 1992)

Solution. In the first case both wattmeters read equal and positive. Hence motor must be
running at unity power (Art. 19.22).

When p.f. is 0.866 leading
In this case; W V IL L1 30= °+cos ( )φ ;

W V IL L2 30= °−cos( )φ

∴                              W W V IL L1 2 3+ = cosφ
                             W W V IL L1 2− = − sin φ

∴                                   tan
( )

( )
φ =

−
+

3 1 2

1 2

W W

W W

         φ = = °−cos ( . )1 0 866 30

        tan /φ = 1 3

∴            
1

3

3

100
1 2=

− −( )W W

∴     W W1 2 100 3− = − /

and      W W1 2 100+ =
∴           2W1 = 200/3; W1 = 33.33 kW; W2 = 66.67 kW
For connection diagram, please refer to Fig. 19.47. The vector or phasor diagram is shown

in Fig. 19.56.
Example 19.47 (a). A star-connected balanced load is supplied from a 3− φ  balanced

supply with a line voltage of 416 volts at a frequency of 50 Hz. Each phase of the load consists of
a resistance and a capacitor joined in series and the reading on two wattmeters connected to
measure the total power supplied are 782 W and 1980 W, both positive. Calculate

(i) power factor of circuit, (ii) the line current, (iii) the capacitance of each capacitor.
(Elect. Engg. I, Nagpur Univ. 1993)

Fig. 19.56
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Solution. (i) As seen from Art. 19.21 tan
( )

( )

( )

( )
φ = −

−
+

= −
−

+
3 3 782 1980

782 1980
1 2

1 2

W W

W W
 = 0.75;

φ φ= ° =36 9 0 8. , cos .

 (ii) 3 416 0 8 2762 4 8× × × = =I IL L. , . A

(iii) Z V I X Zph ph ph C ph= = = = = × =/ ( ) / . , sin .416 3 4 8 50 50 0 6 30Ω Ωφ

Now, X fC CC = = × × = × −1 2 1 2 50 106 10 6/ /π φ F
Example 19.48. Each phase of a 3-phase, Δ-connected load consists of an impedance

Z = 20 ∠ °60  ohm. The line voltage is 440 V at 50 Hz. Compute the power consumed by each
phase impedance and the total power. What will be the readings of the two wattmeters connected?

(Elect. and Mech. Technology, Osmania Univ.)
Solution. Z V V I V Zph ph L ph ph ph= = = =20 440Ω; ; /V  = 440/20 = 22 A

Since φ φ= ° = °= ° = × °= × =60 60 0 5 60 20 0 5 10;cos cos . ; cos .R Zph ph Ω

∴ Power/phase = I Rph ph
2 222 10= ×  = 4,840 W

Total power = 3 4 840× ,  = 14,520 W [or P = 3 440 3 22 0 5× × × ×( ) .  = 14,520 W]

Now, W W1 2 14 520+ = , .

Also    tan .φ =
−
+

3 1 2

1 2

W W

W W
∴ tan .

,
60 3 3

14 520
1 2°= =

−W W

∴                               W W1 2−  = 14,520. Obviously, W2 = 0
Even otherwise it is obvious that W2 should be zero because p.f. = cos 60° = 0.5 (Art. 19.19).
Example 19.49. Three identical coils, each having a reactance of 20 Ω  and resistance of

20 Ω are connected in (a) star (b) delta across a 440-V, 3-phase line. Calculate for each method
of connection the line current and readings on each of the two wattmeters connected to measure
the power. (Electro-mechanics, Allahabad Univ. 1992)

Solution. (a) Star Connection

           Z Vph ph= + = = = =20 20 20 2 28 3 440 3 2542 2 . ; /Ω V

I A Iph L= =254 283 8 97/ . . ;  = 8.97 A; cos φ  = R Zph ph/  = 20/28.3 = 0.707

Total power taken = 3 3 440 8 97 0 707V IL L cos . .φ = × × ×  = 4830 W
If W1 and W2 are wattmeter readings, then W W1 2+  = 4830 W ... (i)
Now, tan / ( ) / ( ); ( );φ = = − + − =20 20 3 27901 2 1 2 1 2W W W W W W W ... (ii)
From (i) and (ii) above, W1  = 3810 W; W2 = 1020 W
(b) Delta Connection

           Z V V I A Iph ph ph L= = = = = × =28 3 440 440 28 3 15 5 15 5 3 28 8. , , / . . ; . .Ω A

 P = × × ×3 440 28 8 0 707. .  = 14,490 W (it is 3 times the Y-power)
∴      W W1 2+  = 14,490 W ... (iii)

          tan / ( ) / , ;φ = = − −20 20 3 14 4901 2 1 2W W W W  = 8370 ... (iv)
From Eq. (iii) and (iv), we get, W1  = 11,430 W; W2 = 3060 W
Note: These readings are 3-times the Y-readings.
Example 19.50. Three identical coils are connected in star to a 200-V, three-phase supply and

each takes 500 W. The power factor is 0.8 lagging. What will be the current and the total power if the
same coils are connected in delta to the same supply? If the power is measured by two wattmeters, what
will be their readings? Prove any formula used.            (Elect. Engg. A.M. A. S.I. Dec. 1991)
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Solution. When connected in star as shown in Fig. 19.57 (a), Vph = 200 3/  = 115.5 V

Now, V Iph ph cosφ  = power per phase or 115.5 × Iph × 0.8 = 500

∴ I A Z V Iph ph ph ph= = = =5 41 115 5 5 41 2134. ; / . / . . Ω

R Z X Zph L ph= = × = = = × =cos . . ; sin . . .φ φ2134 0 8 17 2134 0 6 128Ω Ω

Fig. 19.57

The same three coils have been connected in delta in Fig. 19.57 (b). Here, V Vph L= = 200V.

I A I Iph L ph= = = = ×200 2134 9 37 3 9 37 1732/ . . ; . .  = 16.23 A

Total power consumed = 3 200 16 23 0 8× × ×. .  = 4500 W
It would be seen that when the same coils are connected in delta, they consume three times

more power than when connected in star.
Wattmeter Readings

Now, W W
W W

W W1 2
1 2

1 2

4500
3

+ = =
−

+
; tan

( )

( )
φ

        φ φ= = ° =−cos ( . ) . ; tan .1 0 8 36 87 0 75

    0 75
3

4500
1 2.

( )
=

−W W
 ∴  ( )W W1 2 1950− = W

∴       1W = (4500 +1950)/2 = 3225 W; W2 = 1275 W.
Example 19.51. A 3-phase, 3-wire, 415-V system supplies a balanced load of 20 A at a

power factor 0.8 lag. The current coil of wattmeter I is in phase R and of wattmeter 2 in phase B.
Calculate (i) the reading on 1 when its voltage coil is across R and Y (ii) the reading on 2 when its
voltage coil is across B and Y and (iii) the reading on 1 when its voltage coil is across Y and B.
Justify your answer with relevant phasor diagram. (Elect. Machines, A.M.I.E. Sec. B, 1991)

Solution. (i) As seen from phasor diagram of Fig. 19.57 (a)

Fig. 19.57 (a)
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W V IRY A1 30 3 415 20 36 87 30= + = × × × °+ °cos( ) cos( . )φ  = 5647 W

(ii) Similarly, W V IBY B2 30= −cos ( )φ
It should be noted that voltage across W2 is VBY and not VYB. Moreover,

φ = = °−cos ( . ) . ,1 0 8 36 87

∴ W2 3 415 20 30 36 87= × × × °− °cos ( . )  = 14,275 W
(iii) Now, phase angle between IR and VYB is (90°– φ )

∴ W V IYB R2 90 3 415 20 36 87= °− = × × × °cos( ) sin .φ  = 8626 VAR

Example 19.52. A wattmeter reads 5.54 kW when its current coil is connected in R phase
and its voltage coil is connected between the neutral and the R phase of a symmetrical 3-phase
system supplying a balanced
load of 30 A at 400 V. What
will be the reading on the in-
strument if the connections to
the current coil remain un-
changed and the voltage coil
be connected between B and
Y phases? Take phase se-
quence RYB. Draw the corre-
sponding phasor diagram.
(Elect. Machines, A.M.I.E.,
Sec. B, 1992)

Solution. As seen from Fig. 19.57 (b).

W V IR R1
35 54 10 400 3 30= × = × ×cos . ( / ) cos ;φ φor  ∴ cos . ,sin .φ φ= =0 8 0 6

In the second case (Fig. 19.57 (b))
W V IYB R2 90 400 30 400 30 0 6= °− = × × = × ×cos( ) sin .φ φ  = 7.2 kW

Example 19.53. A 3-phase, 3-wire balanced load with a lagging power factor is supplied at
400 V (between lines). A I-phase wattmeter (scaled in kW) when connected with its current coil in
the R-line and voltage coil between R and Y lines gives a reading of 6 kW. When the same termi-
nals of the voltage coil are switched over to Y- and B-lines, the current-coil connections remaining
the same, the reading of the wattmeter remains unchanged. Calculate the line current and power
factor of the load. Phase sequence is R Y B→ → .         (Elect. Engg-1, Bombay Univ. 1985)

Solution. The current through the wattmeter is IR and p.d. across its pressure coil is VRY. As
seen from the phasor diagram of Fig. 19.58, the angle between the two is ( )30°+φ .

∴ W V I V IRY R L L1 30 30= °+ = °+cos( ) cos( )φ φ ... (i)
In the second case, current is IR but voltage is VYB. The angle between the two is (90° – φ )

∴ W V I V IYB R L L2 90 90= °− = °−cos( ) cos( )φ φ
Since W W1 2=  we have

V I V IL L L Lcos ( ) cos ( )30 90°+ = °−φ φ
∴ 30 90°+ = °−φ φ
or 2 60φ = °  ∴ φ = °30

∴ load power factor = cos 30° = 0.866 (lag)
Now    W W1 2=  = 6 kW.
 Hence, from (i) above, we get

6000 = 400 60× °I IL Lcos ;  = 30 A Fig. 19.58

Fig. 19.57 (b)
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Example 19.54. A 3-phase, 400 V circuit supplies a Δ-connected load having phase imped-
ances of Z Z VAB BC CA= ∠ ° = ∠ ° = ∠ − °25 0 25 30 25 30; and .

Two wattmeters are connected in the circuit to measure the load power. Determine the watt-
meter readings if their current coils are in the lines (a) A and B ; (b) B and C; and (c) C and A.
The phase sequence is ABC. Draw the connections of the wattmeter for the above three cases and
check the sum of the two wattmeter readings against total power consumed.

Solution. Taking VAB as the reference voltage, we have Z ZAB BC= ∠ ° = ∠ − °400 0 400 120;

and ZCA = ∠ °400 120 .
The three phase currents can be found as follows:

I
V

Z
jAB

AB

AB

= = ∠ °
∠ °

= ∠ ° = +400 0

25 0
16 0 16 0( )

I
V

Z
jBC

BC

BC

= = ∠ − °
∠ °

= ∠ − ° = − −400 120

25 30
16 150 138 8. ( . )

I
V

Z
jCA

CA

CA

= = ∠ − °
∠ °

= ∠ − ° = − −400 120

25 30
16 150 138 8( . )

Fig. 19.59
The line currents IA, IB and IC can be found by applying KCL at the three nodes A, B and C of the load.

I I I I I j j jA AB AC AB CA= + = − = + − − + = − = ∠ − °( ) ( . ) . .16 0 138 8 29 8 8 30 8 15

I I I j j jB BC AB= − = − − − + = − − = ∠ − °( . ) ( ) . .138 8 16 0 29 8 8 30 8 165

I I I j j jC CA BC= − = − + − − − = + = ∠ °( . ) ( . )138 8 138 8 0 16 16 90
The phasor diagram for line and phase currents is shown in Fig. 19.59 (a) and (b).
(a) As shown in Fig. 19.60 (a), the current coils of the wattmeters are in the line A and B and

the voltage coil of W1 is across the lines A and C and that of W2 is across the lines B and C. Hence,
current through W1 is IA and voltage across it is VAC. The power indicated by W1 may be found in
the following two ways:

(i) P V IAC A1 =| |.| |  × (cosine of the angle between VAC and IA).
= 400 × 30.8 × cos (30° + 15°) = 8710 W

(ii) We may use current conjugate (Art.) for finding the power
P V IVA AC A= = − ∠ °× ∠ °. .400 120 30 8 15

∴   P1 = real part of PVA = – 400 × 30.8 × cos 135° = 8710 W
  P2 = real part of [ ] .V ZBC B = ∠ °× ∠ − °400 120 30 8 165

      = 400 30 8 45× × − °. cos ( )  = 8710 W

∴ P P1 2 8710 8710 17 420+ = + = , W.
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Fig. 19.60

(b) As shown in Fig. 19.60 (b), the current coils of the wattmeters are in the lines B and C
whereas voltage coil of W1 is across the lines B and A and that of W2 is across lines C and A.

(i) ∴ 1 | | . | |BA BP V I=  (cosine of the angle between VBA and IB)
        = 400 × 30.8 × cos 15° = 11,900 W

(ii) Using voltage conjugate (which is more convenient in this case), we have

     P V IVA BA B= = − ∠ × ∠ × −*. º . º400 0 30 8 165

∴  P1 = real part of PVA = – 400 × 30.8 × cos (– 165º) = 11,900 W
P2 = real part of [VCA*IC] = [400 ∠ − °× ∠ ° = × × − °120 16 90 400 16 30] cos( )  = 5,540 W.

∴ P P1 2+  = 11,900 + 5,540 = 17,440 W.
(c) As shown in Fig. 19.60 (c), the current coils of the wattmeters are in the lines C and A

whereas the voltage coil of W1 is across the lines C and B and that of W2 is across the lines A and B.
(i) P1 = real part of [ * ] [( 400 120 ) 16 90 ]CB CV I        

         = 400 16 cos 210 5540W      
P2 = real part of [ * ] [ . . cosV IAB A = ∠° × ∠ − ° = × × ∠ − °400 0 30 8 15 400 30 8 15  = 11,900 W

∴ P P1 2+  = 5,540 + 11,900 = 17,440 W
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Total power consumed by the phase load can be found directly as under :-
PT = real part of [ * * *]V I V I V IAB AB BC BC CA CA+ +
 = real part of

[( ) ( ) ( ) ( ) ( )( )]400 0 16 0 400 120 16 150 400 120 16 150∠ ° ∠ − ° + ∠ − ° ∠ ° + ∠ ° ∠ − °
 = 400 × 16 × real part of ( )1 0 1 30 1 30∠ °+ ∠ °+ ∠ − °
 = 400 × 16 (cos 0° + cos° + cos (– 30°) = 17,485 W
Note. The slight variation in the different answers is due to the approximation made.

Example 19.55. In a balanced 3-phase system load I draws 60 kW and 80 leading kVAR
whereas load 2 draws 160 kW and 120 lagging kVAR. If line voltage of the supply is 1000 V, find
the line current supplied by the generator. (Fig. 19.61)

Solution. For load 1 which is a leading load, tan φ1  = Q P1 1/  = 80/60 = – 1.333; φ1  = 53.1°,
cos φ1  = 0.6. Hence, line current of this load is

I1 60 000 3 1000 0 6= × ×, / .  = 57.8 A
For load 2, tan φ2  = 120/160 = 0.75; φ2  = 26.9°, cos φ2  = 0.8. The line current drawn by

this load is
I2 160 000 3 1000 0 8= × ×, / .  = 115.5 A

If we take the phase voltage as the reference voltage i.e. Vph = ∠ °= ∠ °( / ) ;1000 3 0 578 0

then I1 leads this voltage by 53.1° whereas I2 lags it by 36.9°. Hence, I1 = 57 8 531. .∠ °  and I2 =
115.5 36.9   

∴ I I IL1 1 2 57 8 531 115 5= + = ∠ °+. . .

∠ − ° = ∠ °36 9 1717 42 3. . . A .
Example 19.56. A single-phase motor

drawing 10A at 0.707 lagging power factor is
connected across lines R and Y of a 3-phase sup-
ply line connected to a 3-phase motor drawing
15A at a lagging power factor of 0.8 as shown in
Fig. 19.62(a). Assuming RYB sequence, calculate
the three line currents.

Solution. In the phasor diagram of Fig. 19.61 (b) are shown the three phase voltages and the
one line voltage VRY which is ahead of its phase voltage VR. The current I1 drawn by single-phase
motor lags VRY by cos–1 0.707 or 45°. It lags behind the reference voltage VR by 15° as shown.
Hence, I j1 10 15 9 6 2 6= ∠ − ° = −. . A . The 3-phase motor currents lag behind their respective phase
voltages by cos–1 0.8 or 36.9°. Hence, I jR1 15 36 9 12 9= ∠ − ° = −. .

I jY1 15 120 36 9 15 156 9 138 5 9= ∠ − °− ° = ∠ − ° = − −. ( . ) . . .

IB = ∠ °− ° = ∠ °15 120 36 9 15 831( . ) .

Fig. 19.62

Fig. 19.61
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Applying Kirchhoff’s laws to point A of Fig. 19.62 (a), we get
I I I j j jR R= + = − + − = − = ∠ − °1 1 9 6 2 6 12 9 216 116 24 5 28 2. . . . . .

Similarly, applying KCL to point B, we get
I I I I I I j j jY Y Y Y+ = = − = − − − + = − − = ∠ − °1 1 1 1 138 5 9 9 6 2 6 23 4 33 236 172or . . . . . . . .

Example 19.57. A 3- φ , 434-V, 50-Hz, supply is connected to a 3- φ , Y-connected induction
motor and synchronous motor. Impedance of each phase of induction motor is (1.25 + j2.17) Ω.
The 3-φ synchronous motor is over-excited and it draws a current of 120 A at 0.87 leading p.f.
Two wattmeters are connected in usual manner to measure power drawn by the two motors.
Calculate (i) reading on each wattmeter (ii) combined power factor.

(Elect. Technology, Hyderabad Univ. 1992)
Solution. It will be assumed that the synchronous motor is Y-connected. Since it is over-excited

it has a leading p.f. The wattmeter connections and phasor diagrams are as shown in Fig. 19.63.
Z1 = 1.25 + j2.17 = 2 5 60. ∠ °

Fig. 19.63

Phase voltage in each case = 434 / 3  = 250 V
I1 = 250/2.5 = 100 A lagging the reference vector VR by 60°. Current I2 = 120 A and leads VR

by an angle = cos–1 (0.87) = 29.5°
∴ I1 = 100 60 50 86.6;j     2I 120 29.5 104.6 59j      

IR = I1 + I2 = 154.6 – j27.6 = 156 8 101. .∠ − °
(a) As shown in Fig. 19.63 (b), IR lags VR by 10.1°. Similarly, IY lags VY by 10.1°.
As seen from Fig. 19.63 (a), current through W1 is IR and voltage across it is V V VRB R B= − .

As seen, VRB = 434 V lagging by 30°. Phase difference between VRB and IR is = 30 – 10.1 = 19.9°.
∴ reading of W1 = 434 × 156.8 × cos 19.9° = 63,970 W
Current IY is also (like IR) the vector sum of the line currents drawn by the two motors. It is

equal to 156.8 A and lags behind its respective phase voltage VY by 10.1°. Current through W2 is IY
and voltage across it is VYB = VY – VB. As seen, VYB = 434 V. Phase difference between VYB and IY
= 30° + 10.1° = 40.1° (lag).

∴   reading of W2 = 434 × 156.8 × cos 40.1° = 52,050 W
(b) Combined p.f. = cos 10.1° = 0.9845 (lag)
Example 19.58. Power in a balanced 3-phase system is measured by the two-wattmeter

method and it is found that the ratio of the two readings is 2 to 1. What is the power factor of the
system? (Elect. Science-1, Allahabad Univ. 1991)

Solution. We are given that W1 : W2 = 2 : 1. Hence, 1 2/W W  = r = 1/2 = 0.5. As seen from
Art. 19.21.

cos
.

. .
φ = +

− +
= +

− +

1

2 1

1 0 5

2 1 0 5 0 52 2

r

r r
 = 0.866 lag
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Example 19.59. A synchronous motor absorbing 50 kW is connected in parallel with a
factory load of 200 kW having a lagging power factor of 0.8. If the combination has a power
factor of 0.9 lagging, find the kVAR supplied by the motor and its power factor.

(Elect. Machines, A.M.I.E. Sec B)
Solution. Load kVA = 200/0.8 = 250
Load kVAR = 250 × 0.6 = 150 (lag) [cos φ  = 0.8 sin φ  = 0.6]
Total combined load = 50 + 200 = 250 kW
kVA of combined load = 250/0.9 = 277.8
Combined kVAR = 277.8 × 0.4356 = 121 (inductive) (combined cos φ  = 0.9, sin φ  = 0.4356)
Hence, leading kVAR supplied by synch, motor = 150 – 121 = 29 (capacitive)

kVA of motor alone = ( )kW kVAR2 2 2 250 29+ = +  = 57.8
p.f. of motor = kW/kVA = 50/57.8 = 0.865 (leading)
Example 19.60. A star-connected balanced load is supplied from a 3-phase balanced sup-

ply with a line voltage of 416 V at a frequency of 50 Hz. Each phase of load consists of a resis-
tance and a capacitor joined in series and the readings on two wattmeters connected to measure
the total power supplied are 782 W and 1980 W, both positive. Calculate (a) the power factor of
the circuit (b) the line current and (c) the capacitance of each capacitor.

(Elect. Machinery-I, Bombay Univ.)
Solution. W W1 2728 1980= =and

For a leading p.f.  tanφ = −
−
+

3 1 2

1 2

W W

W W
 ∴  tan

( )
φ = − ×

−
+

3
782 1980

782 1980
 = 0.75

From tables,   φ = ° ′36 54

(a) ∴          cos cosφ = ° ′36 54  = 0.8 (leading)

(b)         power = 3 31 2V I W W V IL L L Lcos cosφ φor + =

or            ( ) .782 1980 3 416 0 8+ = × × ×IL  ∴ I IL ph=  = 4.8 A

(c) Now            Vph = 416 3/  V ∴  Z ph = × =416 3 4 8 50/ . Ω

∴ In Fig. 19.64,    Z j jph = ∠ − ° ′ = − = −50 36 54 50 0 8 0 6 40 30( . . )

Capacitive reactance XC = 30
1

2 50
30; or

π × ×
=

C
 ∴ C = 106 μF .

Fig. 19.64
Example 19.61. The two wattmeters A and B, give readings as 5000 W and 1000 W respec-

tively during the power measurement of 3-φ, 3-wire, balanced load system. (a) Calculate the power
and power factor if (i) both meters read direct and (ii) one of them reads in reverse. (b) If the
voltage of the circuit is 400 V, what is the value of capacitance which must be introduced in each
phase to cause the whole of the power to appear on A. The frequency of supply is 50 Hz.

(Elect. Engg-I, Nagpur Univ. 1992)
Solution. (a) (i) Both Meters Read Direct

W W1 25000 1000= =W W; ;  ∴  W W W W1 2 1 26000 4000+ = − =W W;
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tan ( ) / ( ) /φ = − + = ×3 3 4000 60001 2 1 2W W W W  = 1.1547

∴     φ = = °−tan ( . ) . ;1 11547 491  p.f. = cos 49.1° = 0.655 (lag)
Total power = 5000 + 1000 = 6000 W
(ii) One Meter Reads in Reverse
In this case, tan φ = + − = × =3 3 6000 4000 2 5981 2 1 2( ) / ( ) / .W W W W

∴       φ = = °−tan ( . ) . ;1 2 598 68 95  p.f. = cos 68.95° = 0.36 (lag)
Total power = W1 + W2 = 5000 – 1000 = 4000 W ...Art.
(b) The whole of power would be measured by wattmeter W1 if the load power factor is 0.5

(lagging) or less. It means that in the present case p.f. of the load will have to be reduced from
0.655 to 0.5 In other words, capacitive reactance will have to be introduced in each phase of the
load in order to partially neutralize the inductive-reactance.

Now, 3 6000 3 400 0 655 6000V I IL L Lcos .φ = × × =or

∴       IL = 13.2A; ∴ Iph = 132 3. /  = 7.63 A

    Z V Iph ph ph= = =/ / . .400 7 63 52 4Ω

     X ZL ph= = × °=sin . sin . .φ 52 4 491 39 6Ω
When p.f. = 0.5

3 400 0 5 6000 17 32 17 32 3 10 400 10 40× × × = = = = = =I I A I A ZL L ph ph. ; . ; . / ; / Ω

cos . ; ;sin . ; sin . .φ φ φ= = °= = = × =0 5 60 60 0 886 40 0 886 35 4X Zph Ω

∴ X X X XL C C= − = − =35 4 39 6 35 4. . . ;or  ∴ XC = 4 2. Ω .
If C is the required capacitance, then 4.2 = 1 2 50/ ;π × × C  ∴ C = 758μF .

Tutorial Problems No. 19.2
1. Two wattmeters connected to measure the input to a balanced three-phase circuit indicate 2500 W

and 500 W respectively. Find the power factor of the circuit (a) when both readings are positive and (b) when
the latter reading is obtained after reversing the connections to the current coil of one instrument.

[(a) 0.655 (b) 0.3591] (City & Guilds, London)
2. A 400-V, 3-phase induction motor load takes 900 kVA at a power factor of 0.707. Calculate the kVA

rating of the capacitor bank to raise the resultant power factor of the installation of 0.866 lagging.
Find also the resultant power factor when the capacitors are in circuit and the motor load has fallen to

300 kVA at 0.5 power factor. [296 kVA, 0.998 leading] (City & Guilds, London)
3. Two wattmeters measure the total power in three-phase circuits and are correctly connected. One

reads 4,800 W while other reads backwards. On reversing the latter, it reads 400 W. What is the total power
absorbed by the circuit and the power factor? [4400 W; 0.49] (Sheffield Univ. U.K.)

4. The power taken by a 3-phase, 400-V motor is measured by the two wattmeter method and the
readings of the two wattmeters are 460 and 780 watts respectively. Estimate the power factor of the motor
and the line current. [0.913, 1.96 A] (City & Guilds, London)

5. Two wattmeters, W1 and W2 connected to read the input to a three-phase induction motor running
unloaded, indicate 3 kW and 1 kW respectively. On increasing the load, the reading on W1 increases while
that on W2 decreases and eventually reverses.

Explain the above phenomenon and find the unloaded power and power factor of the motor.
[2 kW, 0.287 lag] (London Univ.)

6. The power flowing in a 3- φ , 3-wire, balanced-load system is measured by the two wattmeter
method. The reading on wattmeter A is 5,000 W and on wattmeter B is – 1,000 W

(a) What is the power factor of the system?
(b) If the voltage of the circuit is 440, what is the value of capacitance which must be introduced into

each phase to cause the whole of the power measured to appear on wattmeter A?
[0.359; 5.43 ΩΩΩΩΩ] (Meters and Meas. Insts. A.M.I.E.E. London)

7. Two wattmeters are connected to measure the input to a 400 V; 3-phase, connected motor outputting
24.4 kW at a power factor of 0.4 (lag) and 80% efficiency. Calculate the
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(i) resistance and reactance of motor per phase
(ii) reading of each wattmeters.

[(i) 2.55 ΩΩΩΩΩ; 5.85 ΩΩΩΩΩ; (ii) 34,915 W; – 4850 W] (Elect. Machines, A.M.I.E. Sec. B, 1993)
8. The readings of the two instruments connected to a balanced three-phase load are 128 W and 56 W.

When a resistor of about 25 Ω  is added to each phase, the reading of the second instrument is reduced to
zero. State, giving reasons, the power in the circuit before the resistors were added.[72 W] (London Univ.)

9. A balanced star-connected load, each phase having a resistance of 10 Ω and inductive reactance of
30 Ω  is connected to 400-V, 50-Hz supply. The phase rotation is red, yellow and blue. Wattmeters connected
to read total power have their current coils in the red and blue lines respectively. Calculate the reading on
each wattmeter and draw a vector diagram in explanation. [2190 W, – 583 W] (London Univ.)

10. A 7.46 kW induction motor runs from a 3-phase, 400-V supply. On no-load, the motor takes a line
current of 4. A at a power factor of 0.208 lagging. On full load, it operates at a power factor of 0.88 lagging
and an efficiency of 89 per cent. Determine the readings on each of the two wattmeters connected to read the
total power on (a) no load and (b) full load. [1070 W, – 494 W; 5500 W; 2890 W]

11. A balanced inductive load, connected in star across 415-V, 50-Hz, three-phase mains, takes a line
current of 25A. The phase sequence is RYB. A single-phase wattmeter has its current coil connected in the R
line and its voltage coil across the line YB. With these connections, the reading is 8 kW. Draw the vector
diagram and find (i) the kW (ii) the kVAR (iii) the kVA and (iv) the power factor of the load.

[(i) 11.45 kW (ii) 13.87 kVAR (iii) 18 kVA (iv) 0.637] (City & Guilds, London)

19.27. Double Subscript Notation

In symmetrically-arranged networks, it is comparatively easier and actually more advanta-
geous, to use single-subscript notation. But for unbalanced 3-phase circuits, it is essential to use
double subscript notation, in order to avoid unnecessary confusion which is likely to result in
serious errors.

Suppose, we are given two coils are whose induced e.m.fs. are 60° out of phase with each other
[Fig. 19.65 (a)]. Next, suppose that it is required to connect these coils in additive series i.e. in such

a way that their e.m.fs. add at an angle of 60°. From the information given, it is impossible to know
whether to connect terminal ‘a’ to terminal ‘c’ or to terminal ‘d’. But if additionally it were given that
e.m.f. from terminal ‘c’ to terminal ‘d’ is 60° out of phase with that from terminal ‘a’ to terminal ‘b’,
then the way to connect the coils is definitely fixed, as shown in Fig. 19.59 (b) and 19.60 (a). The
double-subscript notation is obviously very convenient in such cases. The order in which these sub-
scripts are written indicates the direction along which the voltage acts (or current flows). For example
the e.m.f. ‘a’ to ‘b’ [Fig. 19.59 (a)], may be written as Eab and that from ‘c’ to ‘d’ as Ecd..... The e.m.f.
between ‘a’ and ‘d’ is Ead where Ead = Eab + Ead and is shown in Fig. 19.59 (b).

Example 19.62. If in Fig. 19.60 (a), terminal ‘b’ is connected to ‘d’, find Eac if E = 100 V.
Solution. Vector diagram is shown in Fig. 19.60 (b)
Obviously, Eac = Eab + Edc = Eab ×  (– Ecd)
Hence, Ecd is reversed and added to Eab to get Eac as shown in Fig. 19.60 (b). The magnitude

of resultant vector is
Eac = × ° =2 100 120 100cos /2 ;V  Eac = 100 60∠ − °

Example 19.62(a). In Fig. 19.66 (a) with terminal ‘b’ connected to ‘d’, find Eca.
Solution. Eca = Ecd + Eba = Ecd + (– Eab)
As shown in Fig. 19.67, vector Eab is reversed and then combined with Ecd to get Eca.

Fig. 19.65
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Magnitude of Eca is given by 2 × 100 × cos 60° = 100 V but it leads Eab by 120°.
∴ Eca = 100 120∠ °

    Fig. 19.66         Fig. 19.67

In Fig. 19.68 (b) is shown the vector diagram of the e.m.fs induced in the three phases 1, 2,
3 (or R, Y, B) of a 3-phase alternator [Fig.19.68 (a)]. According to double subscript notation, each
phase e.m.f. may be written as E01, E02 and E03, the order of the subscripts indicating the direction
in which the e.m.fs. act. It is seen that while passing from phase 1 to phase 2 through the external
circuit, we are in opposition to E02.

E12 = E20 + E01 = (– E02) + E01 = E01 – E02

             Fig. 19.68       Fig. 19.69
It means that for obtaining E12, E20 has to be reversed to obtain – E02 which is then combined

with E01 to get E12 (Fig. 19.69). Similarly,
E23 = E30 + E02 = (– E03) + E02 = E02 – E03
E31 = E10 + E03 = (– E01) + E03 = E03 – E01

By now it should be clear that double-subscript notation is based on lettering every junction
and terminal point of diagrams of connections and on the use of two subscripts with all vectors
representing voltage or current. The subscripts on the vector diagram, taken from the
diagram of connections, indicate that the positive direction of the current or voltage is from the
first subscript to the second. For example, ac-
cording to this notation Iab represents a current
whose + ve direction is from a to b in the branch
ab of the circuit in the diagram of connections.
In the like manner, Eab represents the e.m.f.
which produces this current. Further, Iba will rep-
resent a current flowing from b to a, hence its
vector will be drawn equal to but in a direction
opposite to that of Iab i.e. Iab and Iba differ in
phase by 180° although they do not differ in
magnitude.

In single subscript notation (i.e. the one in which single subscript is used) the + ve directions are
fixed by putting arrows on the circuit diagrams as shown in Fig. 19.69 (a). According to this notation

E12 = – E2 + E1 = E1 – E2; E23 = – E3 + E2 = E2 – E3 and E31 = – E1 + E3 = E3 –E1

Fig. 19.69 (a)
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or ERY = ER – EY; EYB = EY – EB; EBR = EB – ER
Example 19.63. Given the phasors V12 = 10 30 5 023∠ ° = ∠ °; ;V  V14 6 60= ∠ − °;

V45 10 90= ∠ ° .  Find (i) V13 (ii) V34 and (iii) V25.
Solution. Different points and the voltage between them have been shown in Fig. 19.70.
(i) Using KVL, we have

V V V 0orV V V 012 23 31 12 23 13+ + = + − =
or V V V13 12 23= + = ∠ °+ ∠ ° = + +10 30 5 0 8 86 5 5. j

         = + = ∠ °1386 5 14 7 70 2. . .j

(ii) Similarly, V V V 0 or V V V 013 34 41 13 34 14+ + = + − =
or   V V V 6 60 14.7 70.234 14 13= − = ∠ − °− ∠ °
      = 3 5 3 1386 5 10 86 10 3 15 226 5− − − = − − = ∠ °j j. . . . .j

(iii) Similarly, V V V V23 34 45 52 0+ + + =
or V V V V23 34 45 52 0+ + − =
or V V V V25 23 34 45 5 0 15 226 5 10 90= + + = ∠ °+ ∠ °+ ∠ °.

= 5 10 86 10 3 10 5 86 0 3 5 86 2 9− − + = − − = − ∠ °. . . . . .j j j .
Example 19.64. In a balanced 3-phase Y-connected voltage source having phase sequence

abc, Van = ∠ °230 30 . Calculate analytically (i) Vbn  (ii) Vcn  (iii) Vab  (iv) Vbc  and (v) Vca . Show
the phase and line voltages on a phasor diagram.

Solution. It should be noted that Van stands for the voltage of terminal a with respect to the
neutral point n. The usual positive direction of the phase voltages are as shown in Fig. 19.71 (a).
Since the 3-phase system is balanced, the phase differences between the different phase voltages
are 120°.

 (i) Vbn = ∠ − ° = ∠ °− ° = ∠ − °120 230 30 120 230 90( )

(ii) V Vcn an= ∠ °= ∠ °+ ° = ∠ °120 230 30 120 230 150( ) ... Fig. 19.71 (b)

Fig. 19.71
(iii) It should be kept in mind that Vab stands for the voltage of point a with respect to point

b. For this purpose, we start from the reference point b in Fig.19.71 (a) and go to point a and find
the sum of the voltages met on the way. As per sign convention given in Art, 19.27 as we go from
b to n, there is a fall in voltage of by an amount equal to Vbn. Next as we go from n to a, there is
increase of voltage given by Van.

∴ V V V V Vab bn an an bn= − + = − = ∠ °− ∠ − °230 30 230 90

      = 230 30 30 230 0 90(cos sin ) ( sin )°+ ° − − °j j

Fig. 19.70
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      = 3 1 3 3230 j j230 230 j
2 2 2 2

    
            

 = 1 3230 3 j 400 60
2 2

  
        

(iv) V V V jbc bn cn= − = ∠ − °− ∠ ° = − −230 90 230 150 230 230

   3 1 1 3j 230 3 j 400 60
2 2 2 2

    
                

(v) ca cn an
3 1 3 1V V V 230 150 230 30 j 230 j 400 400 180

2 2 2 2
    

                          

These line voltages along with the phase voltages have been shown in the phasor diagram of
Fig. 19.71 (b).

Example 19.65. Three non-inductive resistances, each of 100 Ω  are connected in star to a
3-phase, 440-V supply. Three equal choking coils are also connected in delta to the same supply;
the resistance of one coil being equal to 100 Ω . Calculate (a) the line current and (b) the power
factor of the system. (Elect. Technology-II, Sambal Univ.)

Solution. The
diagram of connections
and the vector diagram
of the Y-and Δ-con-
nected impedances are
shown in Fig. 19.72.

The voltage E10between line 1 and neu-
tral is taken along the X-
axis. Since the load is
balanced, it will suffice
to determine the current
in one line only. Applying Kirchhoff’s Law to junction 1, we have

11′I  = I10 + I12 + I13
Let us first get the vector expressions for E10, E20 and E30

E10 = 440

3
1 0 254 0( ) ,+ = +j j , E20 = 1 3254 j

2 2
  

      
 = – 127 – j220

E30 = 1 3254 j
2 2

  
      

 = – 127 + j220

Let us now derive vector expressions for V12 and V31.
V10 = E10 + E02 = E10 – E20 = (254 + j0) – (– 127 – j220) = 381 + j220
V13 = E10 + E03 = E10 – E30 = (254 – j0) – (– 127 + j220) = 381 – j220

I10 = 10

y

E
Z

254 0 2.54 0,
100

j j    12I =
13

 

V
Z

381 220 2.2 3.81 4.4 60
100

j j
j
 

       

        I13 = V

Z

j

j
j13 381 220

100
2 2 381 4 4 120

Δ
= − = − − = ∠ − °. . .

  (a) I'11 = (2.54 + j0) + (2.2 – j3.81) + (– 2.2 – j3.81) = (2.54 – j7.62) = 8.03 ∠  – 71.6°

Fig. 19.72
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(b) p.f. = cos 71.6º = 0.316 (lag)
Alternative Method

This question may be easily solved
by Δ/Y conversion. The star equivalent of
the delta reactance is 100/3 Ω per phase.

As shown is Fig. 19.73, there are
now two parallel circuits across each
phase, one consisting of a resistance of
100 Ω and the other of a reactance of
100/3 Ω.

Taking E10 as the reference vector,
we have

E10 = (254 + j0)

1 2
254 j0 254 j0I 2.54 j0; I j.7.62

100 j100 / 3
  

      

Line current I = (2.54 + j0) + (–j7.62) = (2.54 – j7.62) = 8.03 ∠ – 71.6º ... Fig. 19.73 (b)

19.28. Unbalanced Loads

Any polyphase load in which the impedances in one or more phases differ from the imped-
ances of other phases is said to be an unbalanced load. We will now consider different methods to
handle unbalanced star-connected and delta-connected loads.

19.29. Unbalanced D-c onnected Load
Unlike unbalanced Y-connected load, the unbalanced Δ-connected load supplied from a bal-

anced 3-phase supply does not present any new problems because the voltage across each load
phase is fixed. It is independent of the nature of the load and is equal to line voltage. In fact, the
problem resolves itself into three independent single-phase circuits supplied with voltages which
are 120° apart in phase.

The different phase currents can be calculated in the usual manner and the three line currents
are obtained by taking the vector difference of phase currents in pairs.

If the load consists of three different pure resistances, then trigonometrical method can be
used with advantage, otherwise symbolic method may be used.

Example 19.66. A 3-phase, 3-wire, 240 volt, CBA system supplies a delta-connected load in
which ZAB = 25 ∠90º, ZBC = 15 ∠30°,  ZCA = 20 ∠0º ohms. Find the line currents and total power.

(Advanced Elect. Machines A.M.I.E. Sec. B, Summer 1991)
Solution. As explained in Art. 19.2, a 3-phase system

has only two possible sequences : ABC and CBA. In the ABC
sequence, the voltage of phase B lags behind voltage of phase
A by 120º and that of phase C lags behind phase A voltage by
240º. In the CBA phase which can be written as A → C → B,
voltage of C lags behind voltage A by 120º and that of B lags
behind voltage A by 240º. Hence, the phase voltage which can
be written as

EAB = E ∠ 0º ; EBC = E ∠ – 120º
and   ECA = E ∠ – 240º  or ECA = ∠120º

Fig. 19.73

Fig. 19.74
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∴ I
E

Z
jAB

AB

AB

= = ∠ °
∠ °

= ∠ − ° = −240 0

25 90
9 6 90 9 6. . A

I
E

Z
jBC

BC

BC

= = ∠ °
∠ °

= ∠ ° =240 120

15 30
16 90 16 A

I
E

Z
j jCA

CA

CA

= = ∠ − °
∠ °

= ∠ − ° = − = − −240 120

20 0
12 120 12 0 5 0 866 6 10 4( . . ) ( . ) A

The circuit is shown in Fig. 19.74.
Line current IA'A = IAB + IAC = IAB – ICA = –j9.6 – (–6 – j10.4) = 6 + j0.08
Line current IB'B = IBC – IAB = j16 –(–j9.6) = j25.6 A

 IC'C = ICA – IBC = (–6 – j10.4) – j 16 = (–5 – j26.4) A
Now,  RAB = 0; RBC = 15 cos 30 = 13 Ω ; RCA = 20 Ω
Power
WAB = 0; WBC = IBC

2 RBC = 162 × 13 = 3328 W; WCA = ICA
2 × RCA = 272 × 20 = 14,580 W.

Total Power = 3328 + 14580 = 17,908 W.
Example 19.67. In the network of Fig. 19.75, Ena = 230 ∠ °0  and the phase sequence is abc.

Find the line currents Ia, Ib and Ic as also the phase currents IAB, IBC and ICA.
Ena, Enb, Enc is a balanced three-phase voltage system with phase sequence abc.

(Network Theory, Nagpur Univ. 1993)
Solution. Since the phase sequence is abc, the generator phase voltages are:

E E Ena nb nc= ∠ ° = ∠ − ° = ∠ °320 0 230 120 230 120; ;

Fig. 19.75

As seen from the phasor diagram of Fig. 19.75 (b), the line voltages are as under :-
Vab = Ena – Enb ; Vbc = Enb – Enc ; Vca = Enc – Ena

∴ Vab = 3 230 30 400 30× ° = ∠ ° i e. it is ahead of the reference generator phase voltage
Ena by 30°.

Vbc = 3 230 90 400 90× ∠ ° = ∠ − ° .  This voltage is 90° behind Ena but 120° behind Vab.
Vca = 3 230 150 400 150× ∠ ° = ∠ °  or ∠ − °210 .  This voltage leads reference voltage Ena

by 150° but leads Vab by 120°.
These voltages are applied across the unbalanced Δ - connected  lead as shown in Fig. 19.75 (a).
ZAB = 30 + j40 = 50 531 50 30 58 3 31∠ ° = − = ∠ − °. ; . ,Z jBC

ZCA = 40 30 50 36 9+ = ∠ °j .

IAB = V

Z
jab

AB

= ∠ °
∠ °

= ∠ − ° = −400 30

50 531
8 231 7 36 314

.
. . .

IBC = 
V

Z
jbc

BC

= ∠ − °
∠ − °

= ∠ − ° = −400 90

58 3 31
6 86 59 353 5 88

.
. . .
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ICA = 
V

Z
jca

CA

= ∠ °
∠ °

= ∠ ° = +400 150

50 36 9
8 1131 314 7 36

.
. . .

 Ia = I I j j jAB CA− = − + − = − = ∠ − °7 36 314 314 7 36 10 5 10 5 14 85 45. . . . . . .

 Ib = I I j j jBC AB− = − − + = − − = ∠ − °353 5 88 7 36 314 383 2 74 4 71 215 6. . . . . . . .

 IC = I I j j jCA BC− = − + − + = − + = ∠ °314 7 36 353 5 88 6 67 1324 14 8 116 7. . . . . . . .

Example 19.68. For the unbalanced Δ - connected  load of Fig. 19.76 (a), find, the phase
currents, line currents and the total power consumed by the load when phase sequence is (a) abc
and (b) acb.

Solution. (a) Phase sequence abc (Fig. 19.76).
Let Vab = 100 0 100 0∠ °= + j

Vbc = 
1 3100 120 100 j 50 j86.6
2 2

  
            

Vca = 
1 3100 102 100 50 86.6
2 2

j j
  

            

Fig. 19.76
(i) Phase currents

Phase current, 
ab

ab
 

V
I

Z
100 0 6 8 10 53 8

6 8
j j

j
 

        
 

Similarly,
bc

bc
bc

 
V

I
Z

30 86.6 9.2 3.93 10 156 52
8 6

j j
j

  
         

 

ca
ca

ca
 

V
I

Z
50 86.6 18.39 7.86 20 156 52

4 3
j j
j

  
        

 
(ii) Line Currents

 Line Current aa ab ac ab ca
     I I I I I (6 8) ( 18.39 7.86)j j     

          = 24.39 – j15.86 = 291 33 2. ∠ − ° ′

Similarly,   bb bc ba bc ab
     I I I I I

      ( 9.2 3.93) (6 8) 15.2 4.07 15.73 165 30j j j            

 cc ca cb ca bc
     I I I I I ( 18.39 7.86) ( 9.2 3.93)j j      

      = 919 1179 14 94 52 3. . .+ = ∠ ° ′j

Check         ΣI = +0 0j
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(iii) Power

W I Rab ab ab= = × =2 210 6 600 W

W I Rbc bc bc= = × =2 210 8 800 W

W I Rca ca ca= = × =2 220 4 1600 W

          Total = 3000 W
(b) Phase sequence acb (Fig. 19.77)
Here, abV 100 0 100 j9     

bcV 100 120 50 86.6      

caV 100 120 50 86.6j       
(i) Phase Currents

abI 100 6 8 10 53 8
6 8

j
j

        
 

bcI 50 86.6
8 6

j
j

  
 

 
= ( . . )12 9 93 10 83 8+ = ∠ ° ′j

caI
50 86.6

7 3
j
j

  
 

 = ( . . )2 4 19 86 20 83 8− = − ° ′j

(ii) Line Currents
I I I I I′ = + = −a a ab ac ab ca

  = ( ) ( . . ) ( . . ) .6 8 2 4 19 86 36 1186 12 39 73 6− − − = + = ∠ ° ′j j j

bb I (1.2 9.93) (6 8) ( 4.8 17.93) 18.56 105j j j          

cc I (2.4 19.86) (1.2 9.93) (1.2 29.79) 29.9 87 42j j j           

It is seen that ΣI = +0 0j

(iii) Power

Wab = × =10 6 6002 W

Wbc = × =10 8 8002 W

Wca = × =20 4 16002 W

Total = 3000 W – as before
It will be seen that the effect of phase reversal on an unbalanced Δ-connected load is as

under:
(i) phase currents change in angle only, their magnitudes remaining the same
(ii) consequently, phase powers remain unchanged
(iii) line currents change both in

magnitude and angle.
The adjoining tabulation em-

phasizes the effect of phase sequence
on the line currents drawn by an
unbalanced 3-phase load.

Line Ampere Sequence Sequence
a b c c b a

  a 291 33 2. ∠ − ° ′ 12 39 731. .∠ °
  b 15 73 165. ∠ ° 18 56 105. ∠ °
  c 14 94 52 3. ∠ ° ′ 29 9 87 7. .∠ − °

Fig. 19.77
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Example 19.69. A balanced 3-phase supplies an unbalanced 3-phase delta-connected load
made up of to resistors 100 Ω  and a reactor having an inductance of 0.3 H with negligible
resistance. VL = 100 V at 50 Hz. Calculate (a) the total power in the system.

(Elect. Engineering-I, Madras Univ.)
Solution. The Δ-connected

load and its phasor diagram are
shown in Fig. 19.78 (a).

X LL = = ×ω 314 2 0 2. .
      = 94 3. Ω

Let    abV 100 0 100 0j     

 bcV 100 120    
   = − −50 86 6j .

caV 100 120 50 86.6j      

abI V 100 0 13 0 1 0
Z 100 0

ab

ab
j         

  

bcI 100 0 1.06 210 0.92 0.53
100 0

j          
  

caI 100 120 0.5 120 0.25 0.43
200 0

j         
  

Watts in branch ab V Rab ab= =2 2100 100/ /  = 100 W; VARs = 0
Watts in branch bc = 0;  VARs = 100 × 1.06 = 106 (lag)

Watts in branch ca V Rca ca= =2 2100 200/ /  = 50 W; VRAs = 0
(a) Total power = 100 + 50 = 150 W; VARs = 106 (lag)

19.30. Four-wire Star-connected Unbalanced Load
It is the simplest case of an unbalanced load and may be treated as three separate single-

phase systems with a common return wire. It will be assumed that impedance of the line wires and
source phase windings is zero. Should such an assumption be unacceptable, these impedances can
be added to the load impedances. Under these conditions, source and load line terminals are at the
same potential.

Consider the following two cases:
(i) Neutral wire of zero impedance
Because of the presence of neutral wire (assumed to behaving zero impedance), the star

points of the generator and load are tied together and are at the same potential. Hence, the voltages
across the three load impedances are equalized and each is equal to the voltage of the correspond-
ing phase of the generator. In other words, due to the provision of the neutral, each phase voltage
is a forced voltage so that the three phase voltages are balanced when line voltages are balanced
even though phase impedances are unbalanced. However, it is worth noting that a break or open
( ZN = ∞ ) in the neutral wire of a 3-phase, 2-wire system with unbalanced load always causes
large (in most cases inadmissible) changes in currents and phase voltages. It is because of this
reason that no fuses and circuit breakers are ever used in the neutral wire of such a 3-phase system.

The solution for currents follows a pattern similar to that for the unbalanced delta.
Obviously, the vector sum of the currents in the three lines is not zero but is equal to neutral

current.

Fig. 19.78
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(ii) Neutral wire with impedance ZN
Such a case can be easily solved with the help of Node-pair Voltage method as detailed below.

Consider the general case of a Y- to -Y system with a neutral wire of impedance Zn as shown in Fig.
19.79 (a). As before, the impedance of line wires and source phase windings would be assumed to be
zero so that the line and load terminals, R,Y, B and ′ ′ ′R Y B, ,  are the same respective potentials.

Fig. 19.79

According to Node-pair Voltage method, the above star-to-star system can be looked upon as
multi-mesh network with a single pair of nodes i.e. neutral points N and N'. The node potential i.e.
the potential difference between the supply and local neutrals is given by

′ =
+ +

+ + +
V

E Y E Y E Y
Y Y Y YNN
R R Y Y B B

R Y B N

where ,R YY Y and BY represent the load phase admittances. Obviously, the load neutral N' does
not coincide with source neutral N. Hence, load phase voltages are no longer equal to one another
even when phase voltages are as seen from Fig. 19.79 (b).

The load phase voltage are given by
′ = − ′ ′ = − = − ′′V E V V E V V E VR R NN Y Y NN B B NN; and

The phase currents are
I V Y I V Y I V YR R R Y Y Y B B B= ′ ′ = ′ = ′, and

The current in the neutral wire is IN = VN YN
Note. In the above calculations, ´R R RRI I I  

Similarly, I I I I IY Y YY B BB= ′ = ′ ′ =and .
Example 19.70. A 3-phase, 4-wire system having a 254-V line-to-neutral has the following

loads connected between the respective lines and neutral; ZR = 10 0∠ °  ohm; ZY = 10 37∠ °  ohm
and ZB = ∠ − °10 53  ohm. Calculate the current in the neutral wire and the power taken by each
load when phase sequence is (i) RYB and (ii) RBY.

Solution. (i) Phase sequence RYB (Fig. 19.80)

RNV 254 0 ;    YNV 254 120 ;     BNV 254 120   

  
V 254 0I I 25.4 0
R 10 0

RN
R RN

R

       
  

*

  Ir = IYN = 
254 120

10 37
25 4 157 25 4 0 9205 0 3907 2338 9 95

∠ − °
∠ °

= ∠ − ° = − − = − −. . ( . . ) . .j j

* This method is similar to Millman’s Theorem of Art. 19.32.
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Fig. 19.80

IB = IBN = 
254 120

10 53
25 4 173 25 4 0 9925 01219 25 2 31

∠ °
∠ − °

= ∠ ° = − + = − +. . ( . . ) . .j j

IN = – (IR+ IY+IB) = –[25.4+(–23.38–j9.55) + (– 25.21 + j3.1)] = 23.49 + j6.85
= 24.46 16 15∠ ° ′

Now R R RR Y B= = ° = = ° =10 10 37 8 10 53 6Ω Ω Ω; cos ; cos

225.4 10RW    6.452W; 225.4 8YW    5,162 W
225.4 6BW     3,871 W

(ii) Phase sequence RBY [Fig. 19.81]
VRN 254 0 ;V 254 120YN      
VBN 254 120    

  IR
254 0 25.4 0
10 0

      
  

  IY
254 120 25.4 83
10 37

      
  

     = (3.1 + j25.2)IB

 IB
254 120 25.4 67 (9.95 23.4)
10 53

j          
   
( )N R Y B    I I I I (38.45 1.8)j   

     = − − = ∠ − °38 45 18 38 5 177 3. . . .j .
Obviously, power would remain the same because magnitude of branch currents is unaltered.

From the above, we conclude that phase reversal in the case of a 4-wire unbalanced load supplied
from a balanced voltage system leads to the following changes:

(i) it changes the angles of phase currents but not their magnitudes.
(ii) however, power remains unchanged.
(iii) it changes the magnitude as well as angle of the neutral current IN.

Example 19.71. A 3− φ , 4-wire, 380-V supply is connected to an unbalanced load having
phase impedances of: ZR = (8 + j6) Ω , Zy = (8 – j6) Ω  and ZB = 5 Ω . Impedance of the neutral
wire is ZN = (0.5 + j1) Ω .

Ignoring the impedances of line wires and internal impedances of the e.m.f. sources, find the
phase currents and voltages of the load.

Solution. This question will be solved by using Node-pair Voltage method discussed in Art.
19.30. The admittances of the various branches connected between nodes N and N' in Fig. 19.82 (a).

Fig. 19.81
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YR = 1/ZR = 1/(8 + j6) = (0.08 – j0.06)
YY = 1/ZY = 1/(8 – j6) = (0.08 + j0.06)
YB = 1/2/ZB = 1/(5 + j0) = 0.2
YN = 1/ZN = 1/(0.5 + j1) = (0.4 – j0.8)

Let ER = ( / )380 3 0 220 0 220 0∠ ° = ∠ ° = + j

  EY = 220 120 220 0 5 0 866 110 190∠ − ° = − − = − −( . . )j j

  EB = 220 120 220 0 5 0 866 110 190∠ ° = − + = − +( . . )j j
The node voltage between N' and N is given by

′ =
+ +

+ + +
V

E Y E Y E Y
Y Y Y YNN
R R Y Y B B

R Y B N

      = 200 0 08 0 06 110 190 0 08 0 06 110 190 0 2

0 08 0 06 0 08 0 06 0 2 0 4 0 8

( . . ) ( )( . . ) ( ) .

( . . ) ( . . ) . ( . . )

− + − − + + − + ×
− + + + + −

j j j j

j j j

      = − +
−

= − +18 3

0 76 0 8
3 41 0 76

.

. .
. .

j

j
j

The three load phase voltages are as under:
´R R NN   V E V 220 3.41 0.76 223.41 0.76j j     
´Y Y NN   V E V ( 110 90) 3.41 0.76 106.59 190.76j j j        

B B NN    V E V ( 110 90) 3.41 0.76 106.59 190.76j j j        

Fig 19.82

R R R   I V Y (223.41 j0.76)(0.08 j0.06) 17.83 13.1 22.1 36.3 Aj         

Y Y Y   I V Y ( 106.59 190.76)(0.08 0.06) 2.92 21.66 21.86 82.4 Aj j j         

B B B   I V Y ( 106.59 190.76) 0.2 21.33 37.85 43.45 119.4 Aj j          

N N N I V Y ( 3.41 0.76)(0.4 0.8) 0.76 3.03 3.12 104.1 Aj j j          
These voltage and currents are shown in the phasor diagram of Fig. 19.82 (b) where dis-

placement of the neutral point has not been shown due to the low value of ′VNN .
Note. It can be shown that IN = ′ + ′ + ′I I IR Y B

19.31. Unbalanced Y-connected Load Without Neutral
When a star-connected load is unbalanced and it has no neutral wire. Then its star point is

isolated from the star-point of the generator. The potential of the load star-point is different from
that of the generator star-point. The potential of the former is subject to variations according to the
imbalance of the load and under certain conditions of loading, the potentials of the two star- point
may differ considerably. Such an isolated load star-point or neutral point is called ‘floating’ neutral
point because its potential is always changing and is not fixed.
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All Y-connected unbalanced loads supplied from polyphase systems have floating neutral
points without a neutral wire. Any unbalancing of the load causes variations not only of the poten-
tial of the star-point but also of the voltages across the different branches of the load. Hence, in
that case, phase voltage of the load is not 1 3/  of the line voltage.

There are many methods to tackle such unbalanced Y-connected loads having isolated neu-
tral points.

1. By converting the Y-connected load to an equivalent unbalanced Δ-connected load by
using Y- Δ  conversion theorem. The equivalent Δ-connection can be solved in Fig. 19.80. The
line currents so calculated are equal in magnitude and phase to those taken by the original unbal-
anced Y-connected load.

2. By applying Kirchhoff’s Laws.
3. By applying Millman’s Theorem.
4. By using Maxwell’s Mesh or Loop Current Method.

19.32.  Millman’s Theorem
Fig. 19.83 shows a number of linear bilateral admittances, Y1, Y2, .... connected to a common

point or node ′Ο . The voltages of the free ends of these admittances with respect to another
common point O are V10, V20 ... Vno. Then, according to this theorem, the voltage of ′O  with

respect to O is given by ′ =
+ + +

+ + +
V

V Y V Y V Y V Y
Y Y Y Y00

10 1 20 2 30 3

1 2 3

..

...
no n

n

or ′ = =

=

∑

∑
V

V Y

Y
00

0
1

1

k k

k

n

k

k

n

Proof. Consider the closed loop 0' Ok.
The sum of p.ds. around it is zero. Starting
from ′O  and going anticlockwise, we have

′ + + ′ =V V V00 0ok ko

∴ ′ = − − ′ = − ′V V V V Vko ok 00 00ko

Current through Y Ik kois ′
= ′ = − ′V Y V V Yko k ko k( )00  =
By Kirchhoff’s Current Law, sum of

currents meeting at point ′O  is zero.
∴ ′ + ′ + ′ + ′ =I I I I10 20 0.... ....ko no

    10 00 1 20 00 2 00( ) ( ) ...( ) ... 0ko k′ ′ ′ ′− + − + − + =V V Y V V Y V V Y
or  10 1 20 2 00 1 2... ... ( ... ...)ko k k′ ′+ + + = + + + +V Y V Y V Y V Y Y Y

      ′ =
+ +
+ +

V
V Y V Y

Y Y00
10 1 20 2

1 2

...

...

19.33. Application of Kirchhoff’s Laws
Consider the unbalanced Y-connected load of Fig. 19.84. Since the common point of the three

load impedances is not at the potential of the neutral, it is marked 0' instead of N*. Let us assume the

Fig. 19.83

* For the sake of avoiding printing difficulties, we will take the load star point as 0 instead of 0' for this
article.
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phase sequence V V Vab bc ca, ,  i.e. Vab leads Vbc and Vbc leads Vca. Let the three branch impedances be
Zca, Zab and Zac, however, since double subscript notation is not necessary for a Y-connected imped-
ances in order to indicate to which phase it belongs, single-subscript notation may be used with
advantage. Therefore Z Z Zoa ab oc, ,  can be written as Za, Zb, Zc respectively. It may be
pointed out that double-subscript notation is essential
for mesh-connected impedances in order to make them
definite.

From Kirchhoff’s laws, we obtain
V I Z I Zab ao a ab b= + ... (1)

V I Z I Zbc bo b oc c= + ... (2)

V I Z I Zca co c oa a= + ... (3)

and I I Iaa ba co+ +  = 0 – point law ... (4)
Equation (1), (3) and (4) can be used for finding Ibo.
Adding (1) and (3), we get
V V I Z I Z I Z I Zab ca ao a ao b co c oc a+ = + + +

         = I Z I Z I Z I Z I Z I Zob b co c oa a oa a ob b co c+ + − = + ... (5)

Substituting Ioa  from equation (4) in equation (3), we get

  V I Z I I Z I Z Z I Zca co c bo co a co c a bo a= + + = + +( ) ( ) ... (6)
Putting the value of Ico from equation (5) in equation (6), we have

  V Z Z
V V I Z

Z
I Zca c a

ab ca ob b

c
bo a= +

+ −
+( )

( )

V Z I Z Z I Z Z I Z Z V Z V Z V Z V Zca c ob b c ob b a bo a c ab a ab c ca c ca a= − − + + + + +

∴   I
V V Z V Z
Z Z Z Z Z Zob

ab ca a ab a

a b b c c a

=
+ +

+ +
( )

Since V V Vab bc ca+ + = 0 ∴   I
V Z V Z

Z Z Z Z Z Zob
ab c bc a

a b b c c a

=
−

+ +
... (7)

From the symmetry of the above equation, the expressions for the other branch currents are,

  I
V Z V Z

Z Z Z Z Z Zoc
bc a ca b

a b b c c a

=
−

+ +
... (8) I

V Z V Z
Z Z Z Z Z Zoa

ca b ab c

a b b c c a

=
−

+ +
... (9)

Note. Obviously, the three line currents can be written as

  I I
V Z V Z

Z Z
ao oa

ab c ca b

a b

= − =
−

∑
... (10) I I

V Z V Z

Z Z
bo ob

bc a ab c

a b

= −
−

∑
... (11)

  I I
V Z V Z

Z Z
co oc

ca b bc a

a b

= −
−

∑
... (12)

Example 19.72. If in the unbalanced Y-connected load of Fig. 19.78, Za = (10 + j0), Zb =
(3 + j4) and Zc = (0 – j10) and the load is put across a 3-phase, 200-V circuit with balanced
voltages, find the three line currents and voltages across each branch impedance. Assume phase
sequence of Vab, Vbc, Vca.

Solution. Take Vab along the axis of reference. The vector expressions for the three voltages
are  Vab j= +200 0

Fig. 19.84
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bc
1 3200 j 100 j173.2;
2 2

  
          

V  ca
1 3V 200 j 100 j173.2
2 2

  
          

From equation (9) given above

oaI
( 100 173.2)(3 4) (200 0)(0 10)

(0 10)(10 0) (10 0)(3 4) (3 4)(0 10)
j j j j

j j j j j j
      

 
        

     = 
− +

−
= − +992 8 2119 6

70 90
20 02 4 54

. .
. .

j

j
j

obI
(200 0)(0 10) ( 100 173.2)(10 0)

(10 0)(3 4) (3 4)(0 10) (0 10)(10 0)
j j j j

j j j j j j
      

 
        

     = 1000 268

70 90
7 24 5 48

−
−

= +j

j
j. .

Now, Ioc may also be calculated in the same way or it can be found easily from equation (4)
of Art. 19.33.

Ioc = Iao + Ibo = – Ioa – Iob = 20.02 – j4.54 – 7.24 – j5.48 = 12.78 – j10.02
Now Voa = Ioa

 Za = (– 20.02 + j4.54) (10 + j0) = 200.2 + j45.4
           Vob = Iob Zb = (7.24 + j5.48) (3 + j4) = – 0.2 + j45.4

Voc = Ioc Zc = (12.78 – j10.02) (0 – j10) = – 100.2 – j127.8
As a check, we may combine Voa, Vob and Voc to get the line voltages which should be equal

to the applied line voltages. In passing from a to b through the circuit internally, we find that we
are in opposition to Voa but in the same direction as the positive direction of Vob.

ab ao ob oa ob     V V V V V ( 200.2 45.4) ( 0.2 45.4) 200 0j j j         

bc bo oc ob oc     V V V V V ( 0.2 45.4) ( 100.2 127.8) 100 173.2j j j          

ca co oa oc oa     V V V V V ( 100.2 127.8) ( 200.2 45.4) 100 173.2j j j          

19.34. Delta/Star and Star/Delta Conversions

Let us consider the unbalanced Δ -connected load of Fig. 19.85 (a) and Y-connected load of
Fig. 19.85 (b). If the two systems are to be equivalent, then the impedances between corresponding
pairs of terminals must be the same.

(i) Delta/Star Conversion
For Y-load, total impedance between terminals

1 and 2 is = Z1 + Z2 (it should be noted that double
subscript notation of Z01 and Z02 has been purposely
avoided).

Considering terminals 1 and 2 of Δ -load, we
find that there are two parallel paths having imped-
ances of Z12 and (Z31 + Z23). Hence, the equivalent
impedance between terminals 1 and 2 is given by

1 1 1

12 23 31Z Z Z Z
= +

+
 or Z

Z Z Z
Z Z Z

=
+

+ +
12 23 31

12 23 31

( )

Therefore, for equivalence between the two systems Z Z
Z Z Z
Z Z Z1 2

12 23 31

12 23 31

+ =
+

+ +
( ) ... (1)

Fig. 19.85
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Similarly Z Z
Z Z Z
Z Z Z2 3

23 31 12

12 23 31

+ =
+

+ +
( ) ... (2) Z Z

Z Z Z
Z Z Z3 1

31 12 23

12 23 31

+ =
+

+ +
( )     ... (3)

Adding equation (3) to (1) and subtracting equation (2), we get

2
2

1
12 23 31 31 12 23 23 31 12

12 23 31

12 31

12 23 31

Z
Z Z Z Z Z Z Z Z Z

Z Z Z
Z Z

Z Z Z
=

+ + + − +
+ +

=
+ +

( ) ( ) ( )

∴ Z
Z Z

Z Z Z1
12

=
+ +

12 31

23 31
... (4)

The other two results may be written down by changing the subscripts cyclically

∴ Z
Z Z

Z Z Z2
23 12

12 23 31

=
+ +

; ... (5) Z
Z Z

Z Z Z3
31 23

12 23 31

=
+ +

... (6)

The above expression can be easily obtained by remembering that (Art. 2.19)

        Start Z = 
Product of s connected to thesame terminals

Sumof s

Δ
Δ

Z
Z

'

'

In should be noted that all Z’ are to be expressed in their complex form.
(iii) Star/Delta Conversion
The equations for this conversion can be obtained by rearranging equations (4), (5) and (6),

Rewriting these equations, we get
Z1(Z12 + Z23 + Z31) = Z12Z31 ... (7)
Z2(Z12 + Z23 + Z31) = Z23Z12 ... (8)
Z3(Z12 + Z23 + Z31) = Z31Z23 ... (9)

Dividing equation (7) by (9), we get Z
Z

Z
Z

1

3

12

23

= ∴  Z Z
Z
Z23 12

3

1

=

Dividing equation (8) by (9), we get Z
Z

Z
Z

2

3

12

31

= ∴ Z Z
Z
Z31 12

3

2

=

Substituting these values in equation (7), we have 3 3
1 12 12 31 12 12

1 2
.

  
       

Z Z
Z Z Z Z Z Z

Z Z

or
  
    

3 31 3
1 12 12 12

1 12 2

Z Z Z
Z Z 1+ + = Z Z

Z Z Z
 ∴ Z1Z2 + Z2Z3 + Z3Z1 = Z12 × Z3

Z
Z Z Z Z Z Z

Z
Z Z Z

Z Z
Z12

1 2 2 3 3 1

3
12 1 2

1 2

3

=
+ +

= + +or

Similarly,   Z Z Z
Z Z

Z
Z Z Z Z Z Z

Z23 2 3
2 3

1

1 2 2 3 3 1

1

= + + =
+ +

Z31 = Z3 + Z1 + 
Z Z
Z

Z Z Z Z Z Z
Z

3 1

2

1 2 2 3 3 1

2

=
+ +

As in the previous case, it is to be noted that all impedances must be expressed in their
complex form.

Another point for noting is that the line currents of this equivalent delta are the currents in
the phases of the Y-connected load.

Example 19.73. An unbalanced star-connected load has branch impedances of Z1 = 10
∠ 30° Ω , Z2 = 10 ∠ – 45° Ω , Z3 = 20 ∠ 60° Ω  and is connected across a balanced 3-phase,
3-wire supply of 200 V. Find the line currents and the voltage across each impedance using Y / Δ
conversion method.
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Solution. The unbalanced Y-con-
nected load and its equivalent Δ -con-
nected load are shown in Fig. 19.86.

Now Z1Z2 + Z2Z3 + Z3Z1 = (10
∠ 30°) (10 ∠ – 45°) + (10 ∠ – 45°) (20
∠ 60°) + (20 ∠ 60°) (10 ∠ 30°) = 100
∠ – 15° + 200 ∠ 15° + 200 ∠ 90°

Converting these into their cartesian
form, we get

 = 100 [cos (– 15°) – j sin 15°] + 200 (cos 15° + j sin 15°) + 200 (cos 90° + j sin 90°)
 = 96.6 – j25.9 + 193.2 + j51.8 + 0 + j200 = 289.8 + j225.9 = 368 ∠  38°

1 2 2 3 3 1
12

3

  
 

Z Z Z Z Z Z
Z

Z
368 38 18.4 22 17.0 6.9
20 60

j         
  

23Z
368 38 36.8 8 36.4 5.1

10 30
j        

   

31Z
368 38 36.8 83 4.49 36.5

10 45
j        

   
Assuming clockwise phase sequence of voltages V12, Z23 and V31, we have
 V12 = 200 0 ,  23V 200 120 ,    31V 200 120   

 
12

12
12

 VI
Z

200 0 10.86 22 10.07 4.06
18.4 22

j        
   

 
23

23
23

 
V

I
V

200 120 5.44 128 3.35 4.29
36.8 8

j           
  

 
31

31
31

 
V

I
Z

200 120 5.44 37 4.34 3.2
36.8 83

j        
  

Line current = I I I I I11 12 13 12 31
′ = + = −

 = ( . . ) ( . . ) . . .10 07 4 06 4 34 32 5 73 0 86 5 76 8 32+ − + = + = ∠ ° ′j j j

22 23 12   I I I ( 3.35 4.29) (10.07 4.06) 13.42 8.35 15.79 148 6j j j             

33 31 23   I I I (4.34 3.2) ( 3.35 4.29) 7.69 7.49 10.73 44 16j j j            
These are currents in the phases of the Y-connected unbalanced load. Let us find voltage

drop across each star-connected branch impedance.

Voltage drop across Z1 = V10 = 11 1 I Z 5.76 8 32 .10 30 57.6 38 32          

Voltage drop across Z2 = V20 = 22 2 I Z 15.79 148 6.10 45 157.9 193 6            

Voltage drop across Z3 = V30 = 33 3 I Z 10.73 44 16 .20 60 214.6 *104 16          
Example 19.74. A 300-V (line) 3-phase supply feeds! star-connected load consisting of non-

inductive resistors of 15, 6 and 10 Ω  connected to the R, Y and B lines respectively. The phase
sequence is RYB. Calculate the voltage across each resistor.

Fig. 19.86



Polyphase Circuits 737

Solution. The Y-connected un-
balanced load and its equivalent
Δ -connected load are shown in Fig.
19.87. Using Y / Δ  conversion
method we have

Z
Z Z Z Z Z Z

Z12
1 2 2 3 3 1

3

=
+ +

      = 
90 60 150

10
30

+ + = Ω

  23Z 300 /15 20   

    31Z 300 / 6 50   

Phase current I V ZRY RY= = =/ /12 300 30 10A

Similarly       I V ZYB YB= = =/ /23 300 20 15A

   I V ZBR BR= = =/ /31 300 50 6A

Each current is in phase with its own voltage because the load is purely resistive.
The line currents for the delta connection are obtained by compounding these phase currents

in pairs, either trigonometrically or by phasor algebra. Using phasor algebra and choosing VRY as
the reference axis, we get

1 1I 10 0; I 15( 3 / 2) 7.5 13.0;I 6( 3 / 2) 3.0 5.2
2 2RY YB BRj j j j j              

Line currents for delta-connection [Fig. 19.66 (b)] are

R RY RB RY BR    I I I I I (10 0) ( 3 5.2) 13 5.2j j j        or 14 A in magnitude

Y YR YB YB RY    I I I I I ( 7.5 13.0) (10 0) 17.5 13j j j         or 21.8 A in magnitude

B BR BY BR YB    I I I I I ( 3.0 5.2) ( 7.5 13.0) 4.5 18.2 18.7j j j         A in magnitude
These line currents for Δ -connection are the phase currents for Y-connection. Voltage drop

across each limb of Y-connected load is

1RN R V I Z (13 5.2)(15 0) 195 78j j      volt or 210 V
VYN = IYZ2 = (– 17.5 – j13.0)(6 + j0) = – 105 – j78 volt or 131 V
VBN = IBZ3 = (4.5 + j18.2)(10 + j0) = 45 + j182 volt or 187 V
As a check, it may be verified that the difference of phase voltages taken in pairs should give

the three line voltages. Going through the circuit internally, we have
VRY = VRN + VNY = VRN – VYN = (195 – j78) – (105 – j78) = 300 ∠ 0°
VYB = VYN – VBN = (– 105 – j78) – (45 + j182) = – 150 – j260 = 300 ∠ –120°
VBR = VBN – VRN = (45 + j182) – (195 – j78) = – 150 + j260 = 300 ∠ 120°
This question could have been solved by direct geometrical methods as shown in Ex. 19.52.
Example 19.75 A Y-connected load is supplied from a 400-V, 3-phase, 3-wire symmetrical

system RYB. The branch circuit impedances are

Z j Z j Z jR Y B= + = + = −10 3 10 20 20 3 0 10; ;

Determine the current in each branch. Phase sequence is RYB.
(Network Analysis, Nagpur Univ. 1993)

Fig. 19.87
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Solution. The circuit is shown in Fig. 19.88. The problem will be solved by using all the four
possible ways in which 3-wire unbalanced Y connected load can be handled.

Now, RZ 20 30 (17.32 10)j     

YZ 40 60 (20 34.64)j     

BZ B j= ∠ − ° = −10 90 10

Also, let RYV 400 0 400 0j     

RBV j= ∠ − ° = − −400 120 200 346

RV j= ∠ ° = − +400 120 200 346

(a) By applying Kirchhoff’s Laws
With reference to Art. 19.33, it is seen that

 I I
V Z V Z

Z Z Z Z Z Z
I

V Z V Z
Z Z Z Z Z ZRO R

RY B BR Y

R Y Y B B R
YO Y

YB R RY B

R Y Y B B R

= =
−

+ +
= =

−
+ +

; ;I

 I I
V Z V Z

Z Z Z Z Z ZBO B
BR Y YB R

R Y Y B B R

= =
−

+ +

Now,  Z Z Z Z Z ZR Y Y B B R+ +
= 20 30 40 60 40 60 10 90 10 90 20 30∠ ° ∠ °+ ∠ ° ∠ − °+ ∠ − ° ∠ °. . .
= 800 90 400 30 200 60 446 426 617 437∠ °+ ∠ − °+ ∠ − °= + = ∠ °j .

    RY B BR Y V Z V Z 400 10 90 400 120 .40 60          
= 16 000 4000 16 490 14 3, ,− = ∠ − ° ′j

∴         RI
16,490 14 3 26.73 57 45

617 43.7
          
  

 YB R RY B V Z V Z 400 120 .20 30 400.10 90 4000 4000 90j                

       YI
4000 90 6.48 133.7
617 43.7

        
  

     BR Y YB R V Z V Z 400 120 .40 60 400 120 20. 30           
= − + = ∠ ° ′16 000 8 000 17 890 153 26, , ,j

∴        BI
17,890 153 26 29 109 45

617 43.7
        
  

(b) By Star/Delta Conversion (Fig. 19.89)
The given star may be converted into the equivalent delta with the help of equations given in

Art. 19.34.

  
R Y Y B B R

RY
B

   Z Z Z Z Z ZZ
Z

617 43.7 61.73 133.7
10 90

      
   

   
R Y

YB
R

 ΣZ ZZ
Z

617 43.7 30.87 13.7
20 30

      
  

   
R Y

BR
Y

 ΣZ ZZ
Z

617 43.7 15.43 16.3
40 60

       
  

   
RY

RY
RY

 VI
Z

400 6.48 133.7 ( 4.47 4.68)
61.73 133.7

j        
  

Fig. 19.88
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Fig. 19.89

YB
YB

YB
 VI

Z
400 120 12.95 133.7 ( 8.95 9.35)
30.87 13.7

j           
  

BR
BR

BR
 VI

Z
400 120 25.9 136.3 ( 18.7 17.9)

15.43 16.3
j         

   

RR RY BR   I I I 14.23 22.58 26.7 57 48j       

YY YB RY   I I I 4.48 4.67 6.47 134 6j        

YB BR YB   I I I 9.85 27.25 29 109 48j       

  I = +( )0 0j –as a check
As explained in Art. 19.34, these line currents of the equivalent delta represent the phase

currents of the star-connected load of Fig. 19.89 (a).
Note. Minor differences are due to accumulated errors.
(c) By Using Maxwell’s Loop Current Method
Let the loop or mesh currents be as shown in Fig. 19.90. It may be noted that

I I I I I I IR Y B= = − = −1 2 1 2; and

Considering the drops across R and Y-arms, we get
I1ZR + ZY(I1 – I2) = VRY

or  I1(ZR + ZY) – I2ZY = VRY ... (i)
Similarly, considering the legs Y and B, we have

Z I I Z IY B YBV( )2 1 2− + =

or − + + =I Z I Z Z V1 2Y B Y YB( ) ... (ii)
Solving for I1 and I2, we get

I
V Z Z Z V

Z Z Z Z Z
1 2

=
+ +

+ + −
RY Y B YB Y

R Y Y B Y

( )

( ) ( )
;

I
V Z Z V Z

Z Z Z Z Z
2 2

=
+ +

+ + −
YB R Y RY Y

R Y Y B Y

( )

( ) ( )

1I
400(20 24.64) 400 120 .40 60

(37.32 44.64)(20 24.64) 1600 120
j

j j
        

     

   = 
16 000 4 000

448 427

16 490 14 3

617 437

, , ,

.

−
+

= ∠ − ° ′
∠ °

j

j

       = 26 57 45 139 22∠ − ° ′ = −( . )j

Fig. 19.90
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       2I ( 200 346)(37.32 44.64) 400(20 34.64)
484 427

j j j
j

     
 

 

= 
16 000 8 000

448 427

17 890 26 34

617 437
28 4 70 16

, , ,

.
.

−
+

= ∠ − ° ′
∠ °

= ∠ − ° ′
j

j

= 28 4 70 16 9 55 26 7. ( . . )∠ − ° ′ = − j

∴        1R  I I 26 57 45     

       2 1Y   I I I (9.55 26.7) (13.9 22) 4.35 4.7 6.5 134j j j           

       2B   I I 28.4 70 16 28.4 109 44          
(d) By Using Millman’s Theorem*
According to this theorem, the voltage of the load star point ′O  with respect to the star point

or neutral O of the generator or supply (normally zero potential) is given by

   V
V Y V Y V Y

Y Y YOO
RO R YO Y BO B

R Y B
′ =

+ +
+ +

Fig. 19.91

where VRO, VYO and VBO are the phase voltages of the generator or 3-phase supply.
As seen from Fig. 19.91, voltage across each phase of the load is

V V V V V V V V VRO RO O O YO YO OO BO BO OO           

Obviously, ( ) ; ( )RO RO OO R YO YO O O Y        I V V Y I V V Y  and

I V V YBO BO OO B
′ = −( )

Here   RY
1 0.05 30 (0.0433 0.025)

20 30
j       

  

 YY
1 0.025 60 (0.0125 0.0217)

40 60
j       

  

 BY
1 0.1 90 0 0.1

10 90
j      

   

* Incidentally, it may be noted that the p.d. between load neutral and supply neutral is given by

V
V V Y

OO
RO YO BO′ =

′ + ′ + ′

3
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∴    R Y B  Y Y Y 0.0558 0.0533 0.077 43.7j     

Let     ROV 400 0 (231 0)
3

j     

   BOV 231 120 115.5 200j       

    BOV 231 120 115.5 200j      

OO V
231.0.05 30 231 120 .0.025 60 231 120 .01 90

0.077 43.7
                

  

       = 
− −

∠ °
= ∠ − ∠

∠
= ∠ − ° = −15 8 17 32

0 077 437

235 132 4

0 077 437
305 1761 304 5 20 8

. .

. .

. .

. .
. ( . . )

j
j

RO RO OO    V V V 231 ( 304.5 20.8) 535.5 20.8 536 2.2j j         

YO V ( 115.5 200) ( 304.5 20.8) 189 179 260 43 27j j j             

BO V ( 115.5 200) ( 304.5 20.8) 189 221 291 49 27j j j            

∴ RO I 536 2.2 0.05 30 26.5 27.8           
 YO I 260 43 27 0.025 60 6.5 103 27              

BO I 291 49 27 0.1 90 29.1 139 27           
Note. As seen from above, ′ = ′ − ′V V VRO RO OO

Substituting the value of ′VOO , we have

  
     

RO R YO Y BO B
RO RO

R Y B

V Y + V Y + V Y
V = V -

V + V + V

      = 
( ) ( )V V Y Y V Y

Y Y Y
RO YO Y RO BO B

R Y B

− + −
+ +

  = V Y V Y
Y Y Y
RY Y RB B

R Y B

+
+ +

Since VRO  is taken as the reference vector, then
as seen from Fig. 19.92.

 RYV 400 30 and   RBV 400 30    

∴ RO V 400 30 0.025 60 400 30 0.1 90
0.077 43.7

              
  

      = 
28 6 29 64

0 077 437

41 46

0 077 437
532 5 2 3

. .

. . . .
. .

+
∠ °

= ∠ °
∠ °

= ∠ °j

RO RO R   I V Y 532.5 2.3 0.05 30 26.6 27.7            

Similarly, YO V  and BO V  may be found and IY and IB calculated therefrom.

Example 19.76. Three impedances, ZR, ZY and ZB are connected in star across a 440-V,
3-phase supply. If the voltage of star-point relative to the supply neutral is 200 ∠ 150° volt and Y
and B line currents are 10 ∠ – 90° A and 20 ∠ 90° A respectively, all with respect to the voltage
between the supply neutral and the R line, calculate the values of ZR, ZY and ZB.

(Elect Circuit; Nagpur Univ. 1991)

Fig. 19.92
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Solution. Let O and ′O be the supply and load neutrals
respectively. Also, let,

ROV
440 0 254 0 254 0

3
j        

YOY 254 120 127 220j       

BOV 254 120 127 220j      

 I IY Bj j= ∠ − ° = − = ∠ ° =10 90 10 20 90 20;
  IR = – (IY + IB) = – j10
Also, OO V 200 150 173 100j      

RO OO  V V 254 ( 173 100) 427 100 438.5 13.2j j          

YO OO  V V ( 127 220) ( 173 100) 46 320 323 81.6j j j            

BO OO  V V ( 127 220) ( 173 100) 46 120 128.6 69j j j           
As seen from Art. 19.32.

         
00RO

R
R

   
V V

Z
I

438.5 13.2 43.85 76.8
10 90

       
   

         
YO OO

Y
Y

   
V V

Z
I

323 32.3 8.4
10 90

    
   

         I
BO OO

B
B

   
V V

Z 128.6 69 6.43 21
20 90

       
  

19.35. Unbalanced Star-connected Non-inductive Load

Such a case can be easily solved by direct geometrical method. If the supply system is sym-
metrical, the line voltage vectors can be drawn in the form of an equilateral triangle RYB (Fig.
19.94). As the load is an unbalanced one, its neutral point will not, obviously, coincide with the
centre of the gravity or centroid of the triangle. Let it lie at any other point like N. If point N
represents the potential of the neutral point if the unbalanced load, then vectors drawn from N to
points, R, Y and B represent the voltages across the
branches of the load. These voltages can be represented
in their rectangular co-ordinates with respect to the rect-
angular axis drawn through N. It is seen that taking co-
ordinates of N as (0, 0), the co-ordinates of point R are
[(V/2 – x), – y]
of point Y are [ ( / ), ]− + −V x y2

and of point B are [ , ( / )]− −x V y3 2

;
2 2RN YN
V V

x jy x iy                   
V V

3
2BN
Vx j y

  
        

V

Let R1, R2 and R3 be the respective branch impedances, Y1, Y2 and Y3 the respective admit-
tances and IR, IY and IB the respective currents in them.

Fig. 19.93

Fig. 19.94
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Then I V R V YR RN RN= =/ 1 1

Similarly, I V Y I V Y I I IY YN B BN R Y B= = + + =2 3 0and Since.

∴ V Y V Y V YRN YN BN1 2 3 0+ + =

or 1 2 3
3 0

2 2 2
V V VY x jy Y x jy Y x j y

                                                 

or 1 2 3 1 2 3 1 2 3
3( ) ( ) ( ) 0

2 2
V Vx Y Y Y Y Y j Y y Y Y Y

  
            

    

∴ − + + + − =x Y Y Y
V

Y Y( ) ( )1 2 3 1 22
0 ∴ x

V Y Y

Y Y Y
=

−
+ +
( )1 2

1 2 32

Also Y
V

y Y Y Y3 1 2 3
3

2
0− + + =( ) ∴ y

V Y

Y Y Y
=

+ +
3

2
3

1 2 3( )
Knowing the values of x, the values of VRN, VYN and VBN and hence, of IR, IY and IB can be

found as illustrated by Ex. 19.68.
Example 19.77. Three non-inductive resistances of 5, 10 and 15 Ω are connected in star

and supplied from a 230-V symmetrical 3-phase system. Calculate the line currents (magnitudes).
(Principles of Elect. Engg. Jadavpur Univ.)

Solution.
(a) Star/Delta Conversion Method
The Y-connected unbalanced load and its equivalent Δ-connected load are shown in Fig.

19.95 (a) and (b) respectively. Using Y / Δ  conversion, we have

1 2 2 3 3 1
12

3

  
 

Z Z Z Z Z Z
Z

Z
50 150 75 55

15 3
     

23 31Z 275/5 55 and Z 275/10 27.5      
Phase current IRY = VRY/Z12 = 230/(55/3) = 12.56 A
Similarly, IYB = VYB/Z23 = 230/55 = 4.18 A; IBR = VBR/Z31 = 230/27.5 = 8.36 A
The line currents for Δ-connection are

obtained by compounding the above phase
currents trigonometrically or vectorially.
Choosing vector addition and taking VRY as
the reference vector, we get;

 IRY = (12.56 + j0)

IYB = 4.18 
1 3
2 2

j
  
      = – 2.09 – j3.62

 IBR = 
1 38.36
2 2

j
  
      

 = – 4.18 + j7.24

Hence, line currents for Δ-connection of Fig. 19.95 (b) are
       I I I I IR RY RB RY BR= + = −

= ( . ) ( . . ) . .12 56 0 418 7 24 16 74 7 24+ − − + = −j j j  or 18.25 A – in magnitude
       I I I I IY YR YB YB RY= + = −

= ( . . ) ( . ) . . .− − − + = − −2 09 362 12 56 0 14 65 362 15 08j j j or  A – in magnitude
       I I I I IB BR BY BR YB= + = −

= ( . . ) ( . . ) . .− + − − − = − +418 7 24 2 09 362 2 09 10 86j j j  or 11.06 A –in magnitude

Fig. 19.95
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(b) Geometrical Method
Here, 1 2 3 1 2 35 , 10 ; and 15 ; 1/ 5S; 1/10S; 1/15SR R R Y Y Y         

As found above in Art. 19.35 x
V

Y Y Y Y Y= − + +
2 1 2 1 2 3( ) / ( )

  = 
230 1 1 1 1 1 31.4
2 5 10 5 10 15

                

3 1 2 3
3 . ( ) ( 3 115 1/15) /(11/ 30) 36.2
2
Vy Y Y Y Y

  
           

        (115 31.4) 36.2 83.6 36.2
2RN
V x jy j j              

V

        146.4 36.2
2YN
V x jy j             

V

       
3 31.4 163
2BN
Vx j y j

  
           

V

          1R RN I V Y (83.6 36.2) 1/ 5 16.72 7.24j j     

          2Y YN I V Y ( 146.4 36.2) 1/10 14.64 3.62j j       

          3B BN I V Y ( 31.4 163) 1/15 2.1 10.9j j       
These are the same currents as found before.
(c) Solution by Millman’s Theorem

RY 1/5 0 ;   YY 1/10 0 ;   BY 1/15 0 and   R Y B  Y Y Y 11/ 30 0   Siemens
Let the supply voltages be represented (Fig. 19.96) by

ROV 230/ 3 0 133 0 ;      YOV 133 120 ;    BOV 133 120   

Fig. 19.96

The p.d. between load and supply neutral is

      OO
 V 133/5 (133/10) 120 (133/15) 120

30 /11 0
        

  
   = 42 3 10 4 436 138. . . .− = ∠ − °j
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            RO
 V 133 (42.3 10.4) 90.7 10.4j j     

YO
 V 133 120 (42.3 10.4)j      

       = ( . ) ( . . ) . .− − − − = − −66 5 115 42 3 10 4 108 8 104 6j j j

BO
 V 133 120 ( 66.5 115) (42.3 10.4) 108.8 125.4OOV j j j             

  R RO R
  I V Y 1/5.(90.7 10.4) 18.1 2.1j j     or 18.22 A in magnitude

  YI 10.88 10.5j    or 15.1 A in magnitude
  I jB = − +7 5 8 4. .  or 11.7 A in magnitude

Example 19.78. The unbalanced circuit of Fig. 19.97 (a) is connected across a symmetrical
3-phase supply of 400-V. Calculate the currents and phase voltages. Phase sequence is RYB.

Solution. The line voltages are rep-
resented by the sides of an equilateral tri-
angle ABC in Fig. 19.97 (b). Since phase
impedances are unequal, phase voltages are
unequal and are represented by lengths, NA,
NB and NC where N is the neutral point
which is shifted from its usual position. CM
and ND are drawn perpendicular to hori-
zontal side AB. Let co-ordinates of point N
be (0, 0). Obviously, AM = BM = 200 V,
CM = 3  × 200 V, CM = 3  × 200 = 346
V. Let DM = x volts and ND = y volts.

Then, with reference to point N, the
vector expressions for phase voltages are

RV (200 ) ,x jy   YV (200 ) ;x jy    BV (346 )x j y    

R
R

R
 VI

Z
(200 ) 3 4 (24 0.12 0.16 ) ( 32 0.16 0.12 )

3 4 3 4
x jy j x y j x y
j j

   
         

  

Y
Y

Y
 VI

Z
(200 ) 6 8

6 8 6 8
x jy j
j j

    
  

  

    = ( . . ) ( . . )− − − + + −12 0 06 0 08 16 0 08 0 06x y j x y

B
B

B
 VI

Z
(346 ) 8 6

8 6 8 6
x j y j

j j
    

  
  

    = ( . . . ) ( . . . )20 76 0 08 0 06 27 68 0 06 0 08− − + + −x y j x y

Now, I I IR Y B+ + = 0

∴  ( . . . ) ( . . . )32 76 0 26 0 3 1168 0 3 0 26 0− − + + − =x y j x y
Obviously, the real component as well as the j-component must be zero.
∴  32 76 0 26 0 3 0. . .− × − =y  and 1168 0 3 0 26 0. . .+ − =x y
Solving these equations for x and y, we have x = 31.9 V and y = 81.6 V

VR
(200 31.9) 81.6 168 81.6 186.7 25.9j j         

VY
(200 31.9) 81.6 231.9 81.6 245.8 199.4j j          

VB
31.9 (346 81.6) 31.9 264.4 266.3 83.1j j          

Substituting these values of x and y in the expressions for currents, we get

Fig. 19.97
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IR
(24 0.12 31.9 0.16 81.6) ( 32 0.16 31.9 0.12 81.6)j           

= 7.12 – j36.7
Similarly IY 20.44 13.65; 13.3 23.06Bj I j     

         ΣI j= +( . )0 0  – as a check

Example 19.79. A 3− φ , 4-wire, 400-V symmetrical system supplies a Y-connected load
having following branch impedances:

Z Z j and Z jR Y B= = = −100 10 10Ω Ω Ω,

Compute the values of load phase voltages and currents and neutral current. Phase
sequence is RYB.

How will these values change in the event of an open in the neutral wire?
Solution. (a) When Neutral Wire is Intact. [Fig 19.98 (a)]. As discussed in Art. 19.30, the

load phase voltages would be the same as supply phase voltages despite imbalance in the load. The
three load phase voltages are:

VR 231 0 ,V 231 120 and V 231 120Y B          

IR
231 0 /100 0 2.31 0 2.31 0j          

IY
231 120 /10 90 2.31 210 20 11.5j            

IB
231 120 /10 90 23.1 210 20 11.5j            

( )N R Y B    I I I I (2.31 20 11.5 20 11.5) 37.7 Aj j       
(b) When Neutral is Open [Fig.19.98

(b)]
In this case, the load phase voltages will

be no longer equal. The node pair voltage
method will be used to solve the question.
Let the supply phase voltages be given by

RE 231 0 ,   EY 231 120    
 = – 115.5 – j200

BE j= ∠ ° = − ⋅ +231 120 115 5 200

RY 1/100 0.01;  YY 1/ 10 0.1j j   and BY 1/ 10 0.1j j   

NN V j j j j

j j
= × + − − − + − +

+ − +
231 0 01 01 115 5 200 01 115 5 200

0 01 01 01

. ( . )( . ) . ( . )

. ( . ) .
= − +3769 0j

The load phase voltages are given by

R R NN    V E V (231 0) ( 3769 0)N j j      = 4000 V

Y Y NN    V E V 115.5 200 ( 3769 0) (3653.5 200)j j j        

B B NN
    V E V 115.5 200 ( 3769 0) (3653.5 0)j j j        

R R R
  I V Y 4000 0.01 40A    

YI ( 0.1)(3653.5 200) (20 3653.5)j j j     

BI ( 0.1)(3653.5 200) 20 3653.5j j j     
Obviously, the neutral current will just not exist.
Note. As hinted in Art. 19.30 (i), the load phase voltages and currents become abnormally high.

Fig. 19.98



Polyphase Circuits 747

Example 19.80. For the circuit shown in Fig.
19.99 find the readings on the two wattmeters Wa and Wc.

Solution. The three line currents for this prob-
lem have already been determined in Example 19.43.

aoI j= −20 02 4 54. .

boI j= − −7 24 5 48. .

coI 12.78 10.12j   
The line voltages are given by

abV 200 j0  
Vbc = – 100 – j 173.2
Vca = – 100 + j 173.2

Wattmeter Wa carries a current of using Iao = 20.02 – j 4.54 and has voltage Vab impressed
across its pressure coil. Power can be found by using current conjugate.

PVA = (200 + j 0) (20.02 + j 4.54) = (200) (20.02) + j (200)(4.54)
Actual power = 200 × 20.02 = 4004 W ∴  Wa =  4004 W
The other wattmeter Wc carries current of Ico = – 12.78 + j 10.02 and has a voltage Vcb = –

Vbc = 100 + j 173.2 impressed across it. By the same method, wattmeter reading is
Wc = × − + × = − + =( . ) ( . . ) .100 12 78 1732 10 02 1278 1735 5 457.5 W

Example 19.81. Three resistors 10, 20 and 20 Ω are connected in star to the terminals A, B
and C of a 3− φ , 3 wire supply through two single-phase wattmeters for measurement of total
power with current coils in lines A and C and pressure coils between A and B and C and B.
Calculate (i) the line currents (ii) the readings of each wattmeter.

The line voltage is 400-V. (Electrical Engineering-I, Bombay Univ.)
Solution. Let ABV 400 0 ;    VBC =  400 120∠ − °  and CAV 400 120   
As shown in Fig. 19.100, current through wattmeter W1 is IAO or IA and that through W2 is ICO

or IC and the voltages are VAB and VCB respectively. Obviously,
Z Z ZA B C= ∠ ° = ∠ ° = ∠ °10 0 20 0 20 0; ,
The currents IA and IC may be found by applying

either Kirchhoff’s laws (Art. 19.33) or Maxwell’s Mesh
Method. Both methods will be used for illustration.

(a) From Eq. (10), (11) and (12) of Art. 19.33, we have

AI
j= × − − +

× + × + ×
400 20 20 200 346

10 20 20 20 20 10

( )

( ) ( ) ( )

    = 
12 000 6 920

800
15 8 65

, ,
.

− = −j
j A

CI 20( 200 346) 10( 200 346) 2000 10,380 2.5 13
800 800

j j j j            

(b) From Eq. (i) and (ii) of solved example 17.48 (c) we get

1A  I I
2

400 40 20( 200 346) 15 8.65A
30 40 20

j j       
  

2C   I I 30 ( 200 346) 400 20 25 13
800
j j         

As seen, wattmeter W1 carries current IA and has a voltage VAB impressed across its pressure
coil. Power may be found by using voltage conjugate.

VAP (400 0)(15 j8.65) 6000 3,460j j     
∴ reading of W1 = 6000 W = 6 kW
Similarly, W2 carries IC and has voltage VCB impressed across its pressure coil.
Now, CB BC  V V (200 346)j  . Using voltage conjugate, we get

Fig. 19.100

Fig. 19.99
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VAP (200 346)( 2.5 13)j j    
Real power = (200 × – 2.5) + (13 × 346) = 4000 W
∴  reading of W2 = 4kW;    Total power = 10 kW
Example 19.82. Three impedances ZA, ZB and ZC are connected in delta to a 200-V, 3-phase

three-wire symmetrical system RYB.
ZA = 10 ∠  60° between lines R and Y ; ZB = 10 ∠  0° between lines Y and B
ZC = 10 ∠  60° between lines B and R
The total power in the circuit is measured by means

of two wattmeters with their current coils in lines R and
B and their corresponding pressure coils across R and Y
and B and Y respectively. Calculate the reading on each
wattmeter and the total power supplied. Phase sequence
RYB.

Solution. The wattmeter connections are shown
in Fig. 19.101.

RYV 200 0 200 0j     

YBV 200 120 100 173.2j       

BRV 200 120 100 173.2R j      

BRI
200 0 20 60 10 17.32
10 60

j          
  

YBI
200 120 20 120

10 0
        

  

     = − − = ∠ °
∠ °

= ∠ ° = +10 17 32
200 120

10 60
20 60 10 17 32j jBR. ; .I

As seen, current through W1 is IR and voltage across its pressure coil is VRY.

R RY BR  I I I 34.64 Aj  
Using voltage conjugate, we have

VAP (200 0)( 34.64) 0 6,928j j j     
Hence, W1 reads zero.
Current through W2 is IB and voltage across its pressure coil is VBY

B BR YB  I I I 20 34.64;j  BY YB  V V 100 173.2j  
Again using voltage conjugate, we

get

YAP (100 173.2)(20 34.64)j j   
  = 8000 + j0

∴ reading of W2 = 8000 W

19.36. Phase Sequence
Indicators

In unbalanced 3-wire star-con-
nected loads, phase voltages change con-
siderably if the phase sequence of the
supply is reversed. One or the other load
phase voltage becomes dangerously large
which may result in damage to the equip-
ment. Some phase voltage becomes too Fig. 19.102

Fig. 19.101
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small which is equally deterimental to some types of electrical equipment. Since phase voltage
depends on phase sequence, this fact has been made the basis of several types of phase sequence
indicators.* A simple phase sequence indicator may be made by connecting two suitable incan-
descent lamps and a capacitor in a Y-connection as shown in Fig. 19.102. It will be found that for
phase sequence RYB, lamp L1 will glow because its phase voltage will be large whereas L2 will
not glow because of low voltage across it.

When, phase sequence is RBY, opposite conditions develop so that this time L2 glows but
not L1.

Another method of determining the phase sequence is by means of a small 3-phase motor.
Once direction of rotation with a known sequence is found, the motor may be used thereafter for
determining an unknown sequence.

Tutorial Problem No. 19.3
1. Three impedances Z1, Z2 and Z3 are mesh-connected to a symmetrical 3-phase, 400-V, 50-Hz

supply of phase sequence R Y B→ → .
Z1 = (10 + j0) ohm– between R and Y lines
Z2 = (5 + j6) ohm – between Y and B lines
Z3 = (5 – j5) ohm – between B and R lines

Calculate the phase and line currents and total power consumed.
[40 A, 40 A, 56.6 A ; 95.7 A, 78.4 A, 35.2 A; 44.8 kW]

2. A symmetrical 3 - φ , 380-V supply feeds a mesh-connected load as follows :
Load A : 19 kVA at p.f. 0.5 lag ; Load B : 20 kVA at p.f. 0.8 lag : Load C : 10 kVA at p.f. 0.9 load
Determine the line currents and their phase angles for RYB sequence.

[74.6 ∠ –51º A, 98.6 ∠ 172.7º A ; 68.3 ∠ 41.8º A]
3. Determine the line currents in an unbalanced Y connected load supplied from a symmetrical 3 - φ ,

440-V, 3-wire system. The branch impedances of the load are : Z1 = 5 ∠ 30º ohm, Z2 = 10 ∠ 45º ohm and
Z3 = 10 ∠ 45º ohm and Z4 = 10 ∠ 60º ohm. The sequence is RYB. [35.7 A, 32.8 A; 27.7 A]

4. A 3 - φ , Y-connected alternator supplies an unbalanced load consisting of three impedances (10 +
j20), (10 – j20) and 10 Ω  respectively, connected in star. There is no neutral connection. Calculate the
voltage between the star point of the alternator and that of the load. The phase voltage of the alternator is 230
V. [–245.2 V]

5. Non-reactive resistors of 10, 20 and 25 Ω  are star-connected to the R, Y are B phases of a 400-V,
symmetrical system. Determine the current and power in each resistor and the voltage between star point and
neutral. Phase sequence, RYB. [16.5 A, 2.72 kW ; 13.1 A, 3.43 kW; 11.2 A, 3.14 kW ; 68 V]

6. Determine the line current in an unbalanced, star-connected load supplied from a symmetrical 3-
phase, 440-V system. The branch impedance of the load are ZR = 5 ∠ 30º Ω , ZY = 10 ∠ 45º Ω  and ZB =
10 ∠ 60º Ω . The phase sequence is RYB. [35.7 A, 32.8 A, 27.7 A]

7. Three non-reactive resistors of 3, 4 and 5- Ω respectively are star-connected to a 3-phase, 400-V
symmetrical system, phase sequence RYB. Find (a) the current in each resistor (b) the power dissipated in
each resistor (c) the phase angles between the currents and the corresponding line voltages (d) the star-point
potential. Draw to scale the complete vector diagram.

[(a) 66.5 A, 59.5 A, 51.8 A (b) 13.2, 14.15, 13.4 kW (c) 26º24 , 38º10 , 25º20′ ′  (d) 34 V]
8. An unbalanced Y-connected load is supplied from a 400-V, 3- φ , 3-wire symmetrical system. The

branch circuit impedances and their connection are (2 + j2) Ω , R to N ; (3 – j3) Ω , Y to N and (4 + j1) Ω ,
B to N of the load. Calculate (i) the value of the voltage between lines Y and N and (ii) the phase of this
voltage relative to the voltage between line R and Y. Phase sequence RYB.

[(i) (–216–j 135.2) or 225.5 V (ii) 2º or –178º]
9. A star-connection of resistors Ra = 10 Ω  ; Rb = 20 Ω  is made to the terminals A, B and C

respectively of a symmetrical 400-V, φ  supply of phase sequence A B C→ → .  Find the branch voltages and
currents and star-point voltage to neutral.

* It may, however, be noted that phase sequence of currents in an unbalanced load is not necessarily the
same as the voltage phase sequence. Unless indicated otherwise, voltage phase sequence is implied.
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[VA = 148.5 + j28.6 ; IA = 14.85 + j2.86 ; VB = – 198 – j171.4 ; IB = – 9.9 – j8.57
VC = – 198 + j228.6 ; IC = –4.95 + j5.71. VN = 82.5 – j28.6 (to be subtracted from supply voltage)]
10. Three non-reactive resistance of 5, 10 and 5 ohm are star-connected across the three lines of a

230-V 3-phase, 3-wire supply. Calculate the line currents.
 [(18.1 + J21.1) A ; (– 10.9–j 10.45) A ; (– 7.3 + j8.4) A]

11. A 3- φ , 400-V symmetrical supply feeds a star-connected load consisting of non-reactive resistors
of 3, 4 and 5 Ω  connected to the R, Y and B lines respectively. The phase sequence is RYB. Calculate (i) the
load star point potential (ii) current in each resistor and power dissipated in each resistor.

[(i) 34.5 V (ii) 66.4 A, 59.7 A, 51.8 A (iii) 13.22 kW, 14.21 kW, 13.42 kW]
12. A 20- Ω  resistor is connected between lines R and Y, a 50- Ω  resistor between lines Y and B and

a 10-Ω resistor between lines B and R of a 415-V, 3-phase supply. Calculate the current in each line and the
reading on each of the two wattmeters connected to measure the total power, the respective current coils of
which a connected in lines R and Y. [(25.9 – j9); (– 24.9 – j7.2); (– 1.04 + j16.2); 8.6 kW; 7.75 kW]

13. A three-phase supply, giving sinusoidal voltage of 400 V at 50 Hz is connected to three terminals
marked R, Y and B. Between R and Y is connected a resistance of 100 Ω , between Y and B an inductance of
318 mH and negligible resistance and between B and R a capacitor of 31.8 μF . Determine (i) the current
flowing in each line and (ii) the total power supplied. Determine (iii) the resistance of each phase of a
balanced star-connected, non-reactive load, which will take the same total power when connected across the
same supply. [(i) 7.73 A, 7.73 A, (ii) 1,600 W (iii) 100 Ω  (London Univ.)]

14. An unbalanced, star-connected load is fed from a symmetrical 3-phase system. The phase voltages
across two of the arms of the load are VB = 295 ∠ 97° 30′  and VR = 206 ∠  – 25°. Calculate the voltage
between the star-point of the load and the supply neutral. [52.2 ∠ –49.54']

15. A symmetrical 440-V, 3-phase system supplies a star-connected load with the following branch
impedances: ZR = 100 Ω , ZY = j 5 Ω , ZB = – j5 Ω . Calculate the voltage drop across each branch and the
potential of the neutral point to earth. The phase sequence is RYB. Draw the vector diagram.

[ 8800 30 8415 315 8420 28 5 8545 150∠ − ° ∠ − ° − ∠ − ° ∠ °, . , . , ]
16. Three star-connected impedances, Z1 = (20 + j37.7) Ω per phase are in parallel with three delta-

connected impedances, Z2 = (30 – j159.3) Ω  per phase. The line voltage is 398 V. Find the line current,
power factor, power and reactive volt-amperes taken by the combination.

[3.37 ∠10.4°; 0.984 lag; 2295 lag; 2295 W; 420 VAR.]
17. A 3-phase, 440-V, delta-connected system has the loads: branch RY, 20 KW at power factor. 1.0:

branch YB, 30 kVA at power factor 0.8 lagging; branch BR, 20 kVA at power factor 0.6 leading. Find the line
currents and readings on watt-meters whose current coils are in phases R and B.

[90.5 ∠ 176.5°; 111.4 ∠ 14°; 36.7 ∠ – 119; °39.8 kW; 16.1 kW]
18. A 415 V, 50 Hz, 3-phase supply of phase sequence RYB is connected to a delta connected load in

which branch RY consists of R1 = 100 Ω , branch YB consists of R2 = 20 Ω  in series with X2 = 60 Ω  and
branch BR consists of a capacitor C = 30 μF . Take VRY as the reference and calculate the line currents. Draw
the complete phasor diagrams. (Elect. Machines, A.M.I.E. Sec. B, 1989)

[IR = 7.78 ∠ 14.54°, IY = 10.66 ∠ 172.92°, IB = 4.46 ∠ – 47°]
19. Three resistances of 5, 10 and 15 Ω  are connected in delta across a 3-phase supply. Find the

values of the three resistors, which if connected in star across the same supply, would take the same line
currents.

If this star-connected load is supplied from a 4-wire, 3-phase system with 260 V between lines,
calculate the current in the neutral. [2.5 ΩΩΩΩΩ, 1.67 ΩΩΩΩΩ, 5 ΩΩΩΩΩ; 52 A] (London Univ.)

20. Show that the power consumed by three identical phase loads connected in delta is equal to three
times the power consumed when the phase loads are connected in star.

(Nagpur University, Summer 2002)
21. Prove, that the power consumed in balanced three- phase Delta-connected load is three times the

power consumed in starconnected load.     (Nagpur University, Winter 2002)
22. A three-phase 230 volts systems supplies a total load of 2000 watts at a line current of 6 Amp

when three identical impedances are in star-connection across the line terminals of the systems. Determine
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the resistive and reactive components of each impedance.   (Nagpur University, Winter 2002)
23. Three simila coils each of impedance z = (8 + j10) ohms, are connected in star and supplied from

3-phase 400V, 50 Hz supply. Find the line current, power factor, power and total volt amperes.
(Nagpur University, Summer 2003)

24. Three similar each having a resistance of 20 ohm and an inductance of 0.05 H are connected in
star to a 3-phase 50 Hz supply with 400 V between lines. Calculate power factor, total power absorb and
line current. If the same coil are reconnected in delta across the same supply what will be the power factor,
total power absorbed and line current?

(Pune University 2003) (Nagpur University, Winter 2003)
25. A 3 φ star connected load when supplied from 440 V, 50 Hz source takes a line current of 12 amp

lagging w.r.t. line voltage by 700.Calculate : (i) limpedance parameters  (ii) Power factor and its nature  (iii)
Draw phasor diagram indicating all voltages and currents. (Nagpur University, Summer 2004)

26. Derive the relationship between line current and phase current for Delta connected 3 phase load
when supplied from 3 phase balanced supply.   (Nagpur University, Summer 2004)

27. Derive the relationship between line voltage, phase voltage, line current and phase current in a 3
phase star connected and delta connected circuit. (Gujrat University, June/July 2003)

28. show that power input to a 3 phase circuit can be measured by two wattmeters connected properly
in the circuit. Draw vector diagram.  (Gujrat University, June/July 2003)

29. A balanced 3 phase star connected load of 100 kW takes a leading current of 100 A when connected
across a 3 phase, 1100 V, 50 Hz supply. Calculate the circuit constants of the load per phase.

(Mumbai University 2003) (Gujrat University, June/July 2003)
30. Establish relationship between line and phase voltages and currents in a balanced 3-phase star connec
tion. Draw complete phasor diagram for voltages and currents.

(R.G.P.V. Bhopal University, June 2004)
31. A delta connected load has the following impedances :
    ZRY = j 10 Ω, ZYB = 10 ∠ 0o Ω and ZBR = – j 10 Ω. If the load is connected across 100 volt

balanced 3-phase supply, obtain the line currents. (R.G.P.V. Bhopal University, June 2004)
32. Two wattmeters ω1 and ω2 are used to measure power in a 3 phase balanced circuit. Mention the

conditions under which (i) ω1 = ω2 (ii) ω2 = 0 (iii) ω1 = 2ω2.
(V.T.U. Belgaum Karnataka University, February 2002)

33.Three coils each of impedance 20 | 600Ω are connected across a 400V, 3 phase supply. Find the
reading of each of the two wattmeters connected to measure the power when the coils are connected in
(i) star (ii) Delta. (V.T.U. Belgaum Karnataka University, February 2002)

34. The power input to a 3 phase circuit was measured by two wattmeter method and the readings were
3400 and - 1200 watts respectively. Calculate the total power and powerfactor.

(V.T.U. Belgaum Karnataka University, July/August 2002)
35. With the help of connection diagram and vector diagram, obtain expressions for the two wattmeter

readings used to measure power in a 3 phase the DC generator is running.
(V.T.U. Belgaum Karnataka University, July/August 2002)

36. Obtain the relationship between line and phase values of current in a three phase, balanced, delta
connected system. (V.T.U. Belgaum Karnataka University, January/February 2003)

37. Show that in a three phase, balanced circuit, two wattmeters are sufficient to measure the total three
phase power and power factor of the circuit.

(V.T.U. Belgaum Karnataka University, January/February 2003)
38. Each of the two wattmeters connected to measure the input to a three phase circuit, reads 20kW.

What does each instrument reads, when the load p.f. is 0.866 lagging with the total three phase power  remaining
unchanged in the altered condition?   (V.T.U. Belgaum Karnataka University, January/February 2003)

39.Two wattmeters connected to measure power in a 3 phase circuit read 5KW and 1KW, the latter
reading being obtained after reversing current coil connections. Calculate power factor of the load and the
total power consumed. (V.T.U. Belgaum Karnataka University, January/February 2003)

39. Derive the relationship between phase and line values of voltages in a connected load.
(V.T.U. Belgaum Karnataka University, January/February 2003)

40. Three coils each of impedance 20∠600Ω are connected in delta across a 400, 3 phase, 50Hz, 50Hz
Acsupply. Calculate line current and total power.

(V.T.U. Belgaum Karnataka University, January/February 2003)
41. What are the advantages of a three phase system over a single phase system?

(V.T.U. Belgaum Karnataka University, July/August 2003)
42. With a neat circuit diagram and a vector diagram prove that two wattmeters are sufficient to measure

total power in a 3 phase system. (V.T.U. Belgaum Karnataka University, July/August 2003)
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43. A balanced star connected load of (8 + jb)Ω is connected to a 3 phase, 230 V supply. Find the
line current, power factor, power, reactive voltamperes and total voltamperes.

(V.T.U. Belgaum Karnataka University, July/August 2003)
44. Two watt meters are used to measure the power delivered to a balance 3 phase load of power factor

0.281. One watt meter reads 5.2kW. Determine the reading of the second watt meter. What is the line current
if the line voltage is 415 wolt? (V.T.U. Belgaum Karnataka University, January/February 2004)

45.  Write the equations for wattmeter reading W1 and W2 in 3 phase power measurement and therefrom
for power factor. (Anna University, October/November 2002)

46. Show that the wattmeters will read equal in two wattmeter method under unity power factor loading
condition.       (Anna University, November/December 2003)

47. A star connected 3-phase load has a resistance of 6Ω and an inductive reactance of 8Ω in each
brance. Line voltage is 220 volts. Write the phasor expressions for voltage across each branch, line voltages
and line currents. Calculate the total power. (Anna University, November/December 2003)

48. Two wattmeters connected to measure the total power in a 3-phase balanced circuit. One measures
4,800 W, while the other reads backwards. On reversing the latter it is found to read 400 W. What is
the total power and power and power factor? Draw the connection diagram and phasor diagram of the
circuit. ( Mumbai University 2003) (RGPV Bhopal 2001)

49. A star-network in which N is star point made up as follows :
    AN = 70Ω, CN = 90 Ω. Find an equivalent delta network. If the above star-delta network are

superimposed, what would be measured resistance between A and C?
(Pune University, 2003) (RGPV Bhopal 2001)

50. Explain with diagram the measurement of 3-phase power by two-wattmeter method.
(RGPV Bhopal 2002)

51. Show that the power taken by a 3-phase circuit can measured by two wattmeters connected properly
in the circuit.  (RGPV Bhopal)

52. With the aid of star-delta connection diagram, state the basic equation from which star-delta
conversionequation canbe derived. (Pune University, 2003) (RGPV Bhopal 2001)

53. Star-delta connections in a 3-phase supply and their inter-relationship. (RGPV Bhopal  2001)
54. Measurement of power in three-phase circuit in a balanced condition. (RGPV Bhopal 2001)
55. Measurement of reactive power in three-phase circuit.   (RGPV Bhopal 2001)
56. Differentiate between balanced and unbalancedthree-phase supply and balanced and unbalanced

three-phase load.  (RGPV Bhopal  June 2002)
57. A 3-phase 3 wire supply feeds a load consisting of three equal resistors. By how much is the load

reduced  if one of the resistors be removed ? (RGPV Bhopal June 2002)
58. Establish relationship between line and phase voltages and currents in a balanced delta connection.

Draw complete phasor diagram of voltages and currents. (RGPV  Bhopal December 2003)

OBJECTIVE  TESTS – 19

1. The minimum number of wattmeter (s) required
to measure 3-phase, 3-wire balanced or
unbalanced power is
(a) 1
(b) 2
(c) 3
(d) 4

        (GATE 2001)
2. A wattmeter reads 400 W when its current coil

is connected in the R phase and its pressure
coil is connected between this phase and the
neutral of a symmetrical 3-phase system
supplying a balanced star connected 0.8 p.f.
inductive load. The phase sequence is RYB.
What will be the reading of this wattmeter if
its pressure coil alone is reconnected between
the B and Y phases, all other connections
remaining as before?

(a) 400.0 (b) 519.6
(c) 300.0 (d) 692.8

(GATE 2003)
3. Total instantaneous power supplied by a 3-

phase ac supply to a balanced R-L load is
(a) zero
(b) constant
(c) pulsating with zero average
(d) pulsating with non-zero average

(GATE 2004)
4. A balanced 3-phase, 3-wire supply feeds

balanced star connected resistors. If one of the
resistors is  disconnected, then the percentage
reduction in the load will be

(a) 33 
1

3
(b) 50

(c) 66 
2

3
(d) 75 (GATE)
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