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16.1. A.C. Bridges

Resistances can be measured by direct-current Wheatstone bridge, shown in Fig. 16.1 (a) for
which the condition of balance is that

R

R

R

R
1

2

4

3

=  or 1 3 2 4R R R R *

Inductances and capacitances can also be measured by a similar four-arm bridge, as shown
in Fig. 16.1 (b); instead of using a source of direct current, alternating current is employed and
galvanometer is replaced by a vibration galvanometer (for commercial frequencies or by telephone
detector if frequencies are higher (500 to 2000 Hz)).

Fig. 16.1

The condition for balance is the same as before but instead of resistances, impedances are
used i.e.

Z / Z Z / Z1 2 4 3=    or  Z Z Z Z1 3 2 4=
But there is one important difference i.e. not only should there be balance for the magnitudes

of the impedances but also a phase balance. Writing the impedances in their polar form, the above
condition becomes

  Z Z Z Z Z Z Z Z1 1 3 3 2 2 4 4 1 3 1 3 2 4 2 4∠φ ∠φ = ∠φ ∠φ ∠φ + = ∠φ +. . or φ φ

Hence, we see that, in fact, there are two balance conditions which must be satisfied
simultaneously in a four-arm a.c. impedance bridge.

 (i) Z Z Z Z1 3 2 4= ... for magnitude balance
(ii) φ φ φ φ1 3 2 4+ = + ... for phase angle balance
In this chapter, we will consider a few of the numerous bridge circuits used for the

measurement of self-inductance, capacitance and mutual inductance, choosing as examples some
bridges which are more common.

16.2. Maxwell’s Inductance Bridge
The bridge circuit is used for medium inductances and can be arranged to yield results of

considerable precision. As shown in Fig. 16.2, in the two arms, there are two pure resistances so

* Products of opposite arm resistances are equal.
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that for balance relations, the phase balance depends on the remaining two arms. If a coil of an
unknown impedance Z1 is placed in one arm, then its positive phase angle φ1  can be compensated
for in either of the following two ways:

(i) A known impedance with an equal positive phase angle
may be used in either of the adjacent arms (so that φ1  = 3  or 2 
= φ4 ), remaining two arms have zero phase angles (being pure
resistances). Such a network is known as Maxwell’s a.c. bridge or
L1/L4 bridge.

(ii) Or an impedance
with an equal negative
phase angle (i.e.
capacitance) may be used
in opposite arm (so that
φ φ1 3+  = 0). Such a
network is known as
Maxwell-Wien bridge
(Fig. 16.5) or Maxwell’s
L/C bridge.

Hence, we conclude that an inductive impedance
may be measured in terms of another inductive
impedance (of equal time constant) in either adjacent
arm (Maxwell bridge) or the unknown inductive
impedance may be measured in terms of a combination
of resistance and capacitance (of equal time constant) in
the opposite arm (Maxwell-Wien bridge). It is important,
however, that in each case the time constants of the two
impedances must be matched.

As shown in Fig. 16.2,
Z R jX R j L1 1 1 1 1= + = + ω  ... unknown; Z4 = R jX R j L4 4 4 4+ = + ω ...known
R2, R3 = known pure resistances; D = detector
The inductance L4 is a variable self-inductance of constant resistance, its inductance being of

the same order as L1. The bridge is balanced by varying L4 and one of the resistances R2 or R3.
Alternatively, R2 and R3 can be kept constant and the resistance
of one of the other two arms can be varied by connecting an
additional resistance in that arm (Ex. 16.1).

The balance condition is that Z1Z3 = Z2Z4

∴  ( ) ( )R j L R R j L R1 1 3 4 4 2+ = +ω ω
Equating the real and imaginary parts on both sides, we

have
R R R R R R R R1 3 2 4 1 4 2 3= =or / / *
(i.e. products of the resistances of opposite arms are equal).

and     ω ωL R L R L L
R

R1 3 4 2 1 4
2

3

= =or

We can also write that 
1

1 4
4

.
R

L L
R

 

Fig. 16.2

Fig. 16.3
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4
=  i.e., the time constants of the two coils are matched.

James Clark Maxwell
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Hence, the unknown self-inductance can be measured in terms of the known inductance L4
and the two resistors. Resistive and reactive terms balance independently and the conditions are
independent of frequency. This bridge is often used for measuring the iron losses of the
transformers at audio frequency.

The balance condition is shown vectorially in Fig. 16.3. The currents I4 and I3 are in phase
with I1 and I2. This is, obviously, brought about by adjusting the impedances of different branches,
so that these currents lag behind the applied voltage V by the same amount. At balance, the voltage
drop V1 across branch 1 is equal to that across branch 4 and I3 = I4. Similarly, voltage drop V2
across branch 2 is equal to that across branch 3 and I1 = I2.

Example 16.1. The arms of an a.c. Maxwell bridge are arranged as follows: AB and BC are
non-reactive resistors of 100 Ω  each, DA is a standard
variable reactor L1 of resistance 32.7 Ω  and CD
comprises a standard variable resistor R in series with a
coil of unknown impedance. Balance was obtained with
L1 = 47.8 mH and R = 1.36 Ω . Find the resistance and
inductance of the coil.

(Elect. Inst. & Meas. Nagpur Univ. 1993)
Solution. The a.c. bridge is shown in Fig. 16.4.
Since the products of the resistances of opposite

arms are equal

∴  32 7 100 136 1004. ( . )× = + R

∴  32.7 = 136 32 7 1364 4. . .+ = − =R Ror  31.34ΩΩΩΩΩ
Since L L1 4100 100× = ×  ∴ L4 = L1 = 47.8 mH
or because time constants are the same, hence
L1/32.7 = L4/(31.34 + 1.36) ∴  L4 = 47.8 mH

16.3. Maxwell-Wien Bridge or Maxwell’s L/C Bridge
As referred to in Art. 16.2, the positive phase angle of

an inductive impedance may be compensated by the
negative phase angle of a capacitive impedance put in the
opposite arm. The unknown inductance then becomes
known in terms of this capacitance.

Let us first find the combined impedance of arm 1.
1 1 1 1 1 1

1 1 1 1

1

1Z
= +

−
= + = + =

+
R jX R

j

X R
j C

j CR

RC C

ω
ω

∴   1Z
1

1

;
1

R
j CR

 
  2Z 2R 

     Z3 = R j L Z R3 3 4 4+ =ω and
Balance condition is Z1Z3 = Z2Z4

or
1 3 3

2 4 1 3 3 1 2 4 1 2 4
1

( )
or

1
R R j L

R R R R j L R R R j CR R R
j CR
  

      
  

Separating the real and imaginaries, we get

2 4
1 3 2 4 3 1 1 2 4 3 3 2 4

1
and ; andR RR R R R L R C R R R R L C R R

R
    

Fig. 16.4

Fig. 16.5
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Example 16.2. The arms of an a.c. Maxwell bridge are arranged as follows: AB is a non-
inductive resistance of 1,000 Ω  in parallel with a capacitor of capacitance 0.5 μF , BC is a
non-inductive resistance of 600 Ω  CD is an inductive impedance (unknown) and DA is a non-
inductive resistance of 400 Ω . If balance is obtained under these conditions, find the value of the
resistance and the inductance of the branch CD.

[Elect. & Electronic Meas, Madras Univ.]
Solution. The bridge is shown in Fig. 16.6. The

conditions of balance have already been derived in Art.
16.3 above.

Since R R R R1 3 2 4=  ∴  R R R R3 2 4 1= /

∴        R3
600 400

1000
= × = 240 ΩΩΩΩΩ

Also     L CR R3 2 4=

= 0 5 10 400 6006. × × ×−

= 12 10 2× −  = 0.12 H

16.4. Anderson Bridge
It is a very important and useful modification of the Maxwell-Wien bridge described in Art.

16.3. In this method, the unknown inductance is measured in terms of a known capacitance and
resistance, as shown in Fig. 16.7.

Fig. 16.7

The balance conditions for this bridge may be easily obtained by converting the mesh of
impedances C, R5 and R3 to an equivalent star with star point O by Δ / Y  transformation. As seen
from Fig. 16.7 (b).

ODZ 3 5

3 5
;

( 1/ )
R R

R R j C
 

   OCZ 3

3 5

/
( 1/ )

R j C
R R j C

  
  

 
 3Z

With reference to Fig. 16.7 (b) it is seen that
  Z1 = (R1 + jωL1) Z2= R2; Z3= ZOC and Z4 = R4 + ZOD

Fig. 16.6
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For balance Z1Z3 = Z2Z4∴ 1 1( )R j L   OCZ 2 4(R R  ZOD)

∴  3 3 5
1 1 2 4

3 5 3 5

R / j C R R
(R j L ) R R

(R R 1/ j C) R R 1/ j C
   

              

Further simplification leads to 1 3 3 12 4
2 3 4 2 4 5 2 3 5

R R R LR RR R R R R R j R R R j
C C C

      
  

∴   1 32 4
1 2 4 3or /

jR RjR R R R R R
C C

    
  

Also 3 1
2 3 4 2 3 5 2 4 5

R L
R R R R R R R R R

C
     ∴  4 5

1 2 4 5
3

R R
L = CR R + R +

R
  
    

This method is capable of precise measurements of inductances over a wide range of values
from a few micro-henrys to several henrys and is one of the commonest and the best
bridge methods.

Example 16.3. An alternating current bridge is arranged as follows: The arms AB and BC
consists of non-inductive resistances of 100-ohm each, the arms BE and CD of non-inductive
variable resistances, the arm EC of a capacitor of 1 μF  capacitance, the arm DA of an inductive
resistance. The alternating current source is connected to A and C and the telephone receiver to
E and D. A balance is obtained when resistances of arms CD and BE are 50 and 2,500 ohm
respectively. Calculate the resistance and inductance of arm DA.

Draw the vector diagram showing voltage at every point of the network.
(Elect. Measurements, Pune Univ.)

Solution. The circuit diagram and voltage vector diagram are shown in Fig. 16.8. As seen, I2
is vector sum of IC and I3. Voltage V2 = I2 R2 = IC XC. Also, vector sum of V1 and V2 is V as well
as that of V3 and V4. IC is at right angles to V2.

Fig. 16.8

Similarly, V3 is the vector sum of V2 and ICR5.
As shown in Fig. 16.8, R1 = R2. R4/R3 = 50 × 100/100 = 50 Ω
The inductance is given by 2 4 5 4 5 3( / )L CR R R R R R   

∴  61 10 50(100 2500 100 2500 /100)L        
= 0.2505 H
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Example 16.4. Fig. 16.9 gives the connection of
Anderson’s bridge for measuring the inductance L1 and
resistance R1 of a coil. Find R1 and L1 if balance is
obtained when R3 = R4 = 2000 ohms, R2 = 1000 ohms
R5 = 200 ohms and C = 1μF . Draw the vector diagram for
the voltages and currents in the branches of the bridge
at balance.

(Elect. Measurements, AMIE Sec. B Summer 1990)
Solution. R R R R1 2 4 3 1000 2000 2000= = × =/ /  1000 ΩΩΩΩΩ

4 5
1 2 4 5

3

R R
L CR R R

R
  

       

     = 6 2000 200
1 10 1000 2000 200

2000
            

 = 2.4 H

16.5. Hay’s Bridge
It is also a modification of the Maxwell-Wien bridge and is particularly useful if the phase

angle of the inductive impedance 1
m tan ( / )L R     is large. The network is shown in Fig. 16.10.

It is seen that, in this case, a comparatively smaller series resistance R1 is used instead of a parallel
resistance (which has to be of a very large value).

Here 1 1 2 2
1

Z ;ZjR R
C

   
 

3 3 3 4 4Z ;ZR j L R    

Balance condition is Z1Z3 = Z2Z4

or   1 3 3 2 4
1

jR (R j L ) R R
C

  
         

Separating the reals and the imaginaries, we obtain

3 3
1 3 2 4 3 1

1 1
and 0

L R
R R R R L R

C C
     

 
Solving these simultaneous equations, we get

2 2
1 2 4 1 1 2 4

3 32 2 2 2 2 2
1 1 1 1

and
1 1

C R R C R R RL R
R C R C

 
  

    

The symmetry of expressions should help the readers to remember the results even when
branch elements are exchanged, as in Ex. 16.5.

Example 16.5. The four arms of a Hay’s a.c. bridge are arranged as follows: AB is a coil of
unknown impedance; BC is a non-reactive resistor of 1000 Ω ; CD is a non-reactive resistor of
833 Ω  in series with a standard capacitor of 0.38 μF ; DA is a non-reactive resistor of
16,800 Ω . If the supply frequency is 50 Hz, determine the inductance and the resistance at the
balance condition. (Elect. Measu. A.M.I.E. Sec B, 1992)

Solution. The bridge circuit is shown in Fig. 16.11.
 2 2277 50 314.22rad/s; 314.2 98,721       

Fig. 16.10

Fig. 16.9
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6 2

1 2 6 2
98,721 (0.38 10 ) 833 16,800 1000

1 98,721 833 (0.38 10 )
R

 

 
      
     = 210 Ω

6

1 2 6 2
16,800 1000 0.38 10 6.38H

1 98,721 833 (0.38 10 )
L

 

 
     

    

         Fig. 16.11  Fig. 16.12

16.6. The Owen Bridge
The arrangement of this bridge is shown in Fig. 16.12. In this method, also, the inductance is

determined in terms of resistance and capacitance. This method has, however, the advantage of
being useful over a very wide range of inductances with capacitors of reasonable dimensions.

Balance condition is Z1 Z3 = Z2 Z4

Here Z1 = − j

Cω 1

; 2 2 3 3 3 4 4
4

Z ; Z ; Z jR R j L R
C

      
 

∴ 3 3 2 4
1 4

j j(R j L ) R R
C C

  
           

Separating the reals and imaginaries, we get R R
C

C3 2
1

4

=  and L C R R3 1 2 4= .

Since ω does not appear in the final balance equations, hence the bridge is unaffected by
frequency variations and wave-form.

16.7. Heavisible-Campbell Equal Ratio
Bridge

It is a mutual inductance bridge and is used for
measuring self-inductance over a wide range in terms of
mutual inductometer readings. The connections for
Heaviside’s bridge employing a standard variable mutual
inductance are shown in Fig. 16.13. The primary of the
mutual inductometer is inserted in the supply circuit and
the secondary having self-inductance L2 and resistance R2
is put in arm 2 of the bridge. The unknown inductive
impedance having self-inductance of L1 and resistance R1
is placed in arm 1. The other two arms have pure
resistances of R3 and R4.

Fig. 16.13
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Balance is obtained by varying mutual inductance M and resistances R3 and R4.
For balance, 1 3 2 4I R I R ... (i)

  1 1 1 2 2 2( ) ( )I R j L I R j L j MI       
... (ii)

Since I = I1 + I2, hence putting the value of I in equation (ii), we get

1 1 1 2 2 2[ ( )] [ ( )]I R j L M I R j L M       ... (iii)

Dividing equation (iii) by (i), we have 1 1 2 2

3 4

( ) ( )R j L M R j L M
R R

       

∴ 3 2 2 4 1 1[ ( )] [ ( )]R R j L M R R j L M       

Equating the real and imaginaries, we have R R R R2 3 1 4= ... (iv)

Also, R L M R L M3 2 4 1( ) ( )+ = − . If R3 = R4, then L M L M2 1+ = −( )  ∴ L L M1 2 2− =  ... (v)

This bridge, as modified by Campbell, is shown in Fig. 16.14. Here R3 = R4. A balancing coil
or a test coil of self-inductance equal to the self-inductance L2 of the secondary of the
inductometer and of resistance slightly greater than
R2 is connected in series with the unknown inductive
impedance (R1 and L1) in arm 1. A non-inductive
resistance box along with a constant-inductance
rheostat are also introduced in arm 2 as shown.

Balance is obtained by varying M and r. Two
readings are taken; one when Z1 is in circuit and
second when Z1 is removed or short-circuited across
its terminals.

With unknown impedance Z1 still in
circuit, suppose for balance the values of mutual
inductance and r are M1 and r1. With Z1 short-
circuited, let these values be M2 and r2. Then

     L1 = 2(M1 – M2) and R1 = r1 – r2

By this method, the self-inductance and resistance of the leads are eliminated.

Example 16.6. The inductance of a coil is measured by using the Heaviside-Campbell equal
ratio bridge. With the test coil short-circuited, balance is obtained when adjustable non-reactive
resistance is 12.63 Ω  and mutual inductometer is set at 0.1 mH. When the test coil is in circuit,
balance is obtained when the adjustable resistance is 25.9 Ω  and mutual inductometer is set at
15.9 mH. What is the resistance and inductance of the coil?

Solution. With reference to Art. 16.7 and Fig. 16.14, r1 = 25.9 Ω , M1 = 15.9 mH
With test coil short-circuited r2 = 12.63 Ω ; M2 = 0.1 mH

L1 = 2 (M1 – M2) = 2 (15.9 – 0.1) = 31.6 mH

R r r1 1 2= − −  = 25.9 – 12.63 = 13.27 Ω

16.8. Capacitance Bridges
We will consider only De Sauty bridge method of comparing two capacitances and Schering

bridge used for the measurement of capacitance and dielectric loss.

Fig. 16.14
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16.9. De Sauty Bridge
With reference to Fig. 16.15, let

C2 = capacitor whose capacitance
       is to be measured
C3 = a standard capacitor

      R1, R2 = non-inductive resistors
Balance is obtained by varying either R1 or R2.

For balance, points B and D are at the same potential.

∴   1 1 2 2 1 2
2 3

and . .j jI R I R I I
C C

    
  

Dividing one equation by the other, we get

 
1 2 1

2 3
2 3 2

;R C RC C
R C R

  

The bridge has maximum sensitivity when C2 =
C3. The simplicity of this method is offset by the
impossibility of obtaining a perfect balance if both the
capacitors are not free from the dielectric loss. A perfect balance can only be obtained if air
capacitors are used.

16.10. Schering Bridge
It is one of the very important and useful methods of measuring the capacitance and dielectric

loss of a capacitor. In fact, it is a device for comparing an imperfect capacitor C2 in terms of a loss-
free standard capacitor C1 [Fig. 16.16 (a)]. The imperfect capacitor is represented by its equivalent
loss-free capacitor C2 in series with a resistance r [Fig. 16.16 (b)].

Fig. 16.16

For high voltage applications, the voltage is applied at the junctions shown in the figure. The
junction between arms 3 and 4 is earthed. Since capacitor impedances at lower frequencies are
much higher than resistances, most of the voltage will appear across capacitors. Grounding of the
junction affords safety to the operator form the high-voltage hazards while making balancing
adjustment in arms 3 and 4.

Now    4
1 2 3 3 4

1 2 4 4 4 4

1Z ;Z ;Z ;Z
(1/ ) 1

Rj jr R
C C R j C j C R

       
      

For balance, Z1Z3 = Z2Z4

Fig. 16.15
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or 3 34
a 4 4 4

1 2 4 4 1 2

jR jRRj jr or (1 C R ) R r
C C 1 j C R C C

        
                        

Separating the real and imaginaries, we have C C R R2 1 4 3= ( / )  and r R C C= 3 4 1.( / ) .
The quality of a capacitor is usually expressed in terms of its phase defect angle or dielectric

loss angle which is defined as the angle by which current departs from exact quadrature from the
applied voltage i.e. the complement of the phase angle. If φ  is the actual phase angle and δ
the defect angle, then 90     . For small values of δ , tan δ  = sin

δ  = cos φ  (approximately). Tan δ  is usually called the dissipation
factor of the R–C circuit. For low power factors, therefore, dissipation
factor is approximately equal to the power factor.

As shown in Fig. 16.17,
Dissipation factor = power factor = tan δ

= r

X

r

C
rC

C

= =
1 2

2/ ω
ω

Putting the value of rC2  from above,

Dissipation factor = 2 4 4rC C R    = power factor.
Example 16.7. In a test on a bakelite sample at 20 kV, 50 Hz by a Schering bridge, having

a standard capacitor of 106 pF , balance was obtained with a capacitance of 0.35 μF  in parallel
with a non-inductive resistance of 318 ohms, the non-inductive resistance in the remaining arm of
the bridge being 130 ohms. Determine the capacitance, the p.f. and equivalent series resistance
of the specimen. Derive any formula used. Indicate the precautions to be observed for avoiding
errors. (Elect. Engg. Paper I, Indian Engg. Services 1991)

Solution. Here C1 = 106 pF, C4 = 0.35 μF , R4 = 318 Ω , R3 = 130 Ω .

    2 1 4 3.( | ) 106 318 /130C C R R    = 259.3 pF

     6 12
3 4 1.( / ) 130 0.35 10 /106 10r R C C         = 0.429 MΩ

  p.f. = 6 12
2 (2 50) 0.429 10 259.3 10rC           = 0.035

Example 16.8. A losy capacitor is tested with a Schering bridge circuit. Balance obtained
with the capacitor under test in one arm, the succeeding arms being, a non-inductive resistor of
100 Ω , a non-reactive resistor of 309 Ω  in parallel with a pure capacitor of 0.5 μF  and a
standard capacitor of 109 μμF . The supply frequency is 50 Hz. Calculate from the equation at
balance the equivalent series capacitance and power factor (at 50 Hz) of the capacitor under test.

(Measu. & Instru., Nagpur Univ. 1992)
Solution. Here, we are given

1 109pFC  ; R3 = 100 ; C4 = 0.5 F ; R4 = 309 Ω
Equivalent capacitance is 2 109 309 /100C    = 336.8 pF

p.f. = 6
4 4 314 0.5 10 309C R        = 0.0485

16.11. Wien Series Bridge

It is a simple ratio bridge and is used for audio-frequency measurement of capacitors over a
wide range. The bridge circuit is shown in Fig. 16.18.

Fig. 16.17
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                        Fig. 16.18 Fig. 16.19

The balance conditions may be obtained in the usual way. For balance

1 2 4 3/R R R R  and C C R R1 4 3 2= ( / )

16.12. Wien Parallel Bridge
It is also a ratio bridge used mainly as the feedback network in the wide-range audio-

frequency R-C oscillators. It may be used for measuring audio-frequencies although it is not as
accurate as the modern digital frequency meters.

The bridge circuit is shown in Fig. 16.19. In the simple theory of this bridge, capacitors C1
and C2 are assumed to be loss-free and resistances R1 and R2 are separate resistors.

The usual relationship for balance gives

2
4 1 3

1 2 2

RjR R R
C 1 j C R

    
             

 or 4 1 2 2 2 3
1

jR R (1 j C R ) R R
C

  
         

Separating the real and imaginary terms, we have

2
1 4 2 4 2 3

1

CR R R R R R
C

      or   
32 1

1 4 2

RC R
C R R

  ... (i)

and
4

2 2 4
1

0RC R R
C

   
   or   

2

1 2 1 2

1
R R C C

  ... (ii)

or         
1 2 1 2

1
2

f
R R C C

 
  Hz

Note. Eq. (ii) may be used to find angular frequency ω of the source if terms are known. For
such purposes, it is convenient to make 1 2 3 4 2 12 , and 2C C R R R R   . In that case, the bridge
has equal ratio arms so that Eq. (i) will always be satisfied. The bridge is balanced simultaneously
by adjusting R2 and R1 (though maintaining R2 = 2R1). Then, as seen from Eq. (ii) above

2
1 1 2 21/( .2 .2 . )R R C C   or 1 21/(2 )R C  

Example 16.9. The arms of a four-arm bridge ABCD, supplied with a sinusoidal voltage,
have the following values:

AB : 200 ohm resistance in parallel with 1 μF  capacitor; BC : 400 ohm resistance; CD :
1000 ohm resistance and DA : resistance R in series with a 2μF  capacitor.

Determine (i) the value of R and (ii) the supply frequency at which the bridge will be
balanced. (Elect. Meas. A.M.I.E. Sec. 1991)



A.C. Bridges 639

Fig. 16.21

Solution. The bridge circuit is shown in Fig. 16.20.
(i) As discussed in Art. 16.12, for balance we have

32 1 1

1 4 2

2 1000or
1 4000 200

RC R R
C R R

    

∴  R1 = 200 × 0.5 = 100 Ω
(ii) The frequency at which bridge is balanced is given by

1 2 1 2

1
2

f
R R C C

 
  Hz

   = 
610

2 100 200 1 2    
 = 796 Hz

Tutorial Problems No. 16.1
1. In Anderson a.c. bridge, an impedance of inductance L and resistance R is connected between A

and B. For balance following data is obtained. An ohmic resistance of 1000Ω  each in arms AD
and CD, a non-inductive resistance of 500Ω  in BC, a pure resistance of 200Ω  between points D
and E and a capacitor of 2μF  between C and E. The supply is 10 volt (A.C.) at a frequency of
100 Hz and is connected across points A and C. Find L and R. [1.4 H; 500 Ω ]

2. A balanced bridge has the following components connected between its five nodes, A, B, C, D and E:
Between A and B : 1,000 ohm resistance; Between B and C : 1,000 ohm resistance
Between C and D :an inductor; Between D and A :218 ohm resistance
Between A and E : 469 ohm resistance; Between E and B : 10 μ F capacitance
Between E and C : a detector; Between B and D : a power supply (a.c.)
Derive the equations of balance and hence deduce the resistance and inductance of the inductor.

[R = 218 Ω , L = 7.89 H] (Elect. Theory and Meas. London Univ.)
3. An a.c. bridge is arranged as follows: The arms AB and BC consist of non-inductive resistance of

100Ω , the arms, BE and CD of non-inductive variable resistances, the arm EC of a capacitor of

1 μF  capacitance, the arm DA of an inductive resistance. The a.c. source is connected to A and C
and the telephone receiver to E and D. A balance is obtained when the resistances of the arms CD
and BE are 50 Ω  and 2500 Ω  respectively.
     Calculate the resistance and the inductance of the arm DA.
What would be the effect of harmonics in the waveform of the
alternating current source? [50 Ω ; 0.25 H]

4. For the Anderson’s bridge of Fig. 16.21, the values are
underbalance conditions. Determine the values of unknown
resistance R and inductance L.        [R = 500 Ω ; L = 1.5 H]

(Elect. Meas & Inst. Madras Univ. Nov. 1978)
5. An Anderson’s bridge is arranged as under and balanced for

the following values of the bridge components:
Branch AB – unknown coil of inductance L and resistance R
Branch BC – non-inductive resistance of 500 Ω
Branches AD & CD – non-inductive resistance of 100 Ω  each
Branch DE – non-inductive resistance of 200 Ω
Branch EB – vibration galvanometer
Branch EC – 2.0 μF capacitance
Between A and C is 10 V, 100-Hz a.c. supply. Find the values
of R and L of the unknown coil.

[R = 500 Ω ; L = 0.5 H]  (Elect. Meas & Meas. Inst., Gujarat Univ.)
6. An a.c. Anderson bridge is arranged as follows:

(i) branches BC and ED are variable non-reactive resistors
(ii) branches CD and DA are non-reactive resistors of 200 ohm each
(iii)  branch CE is a loss-free capacitor of 1 μF  capacitance.

Fig. 16.20
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The supply is connected across A and C and the detector across B and E. Balance is obtained
when the resistance of BC is 400 ohm and that of ED is 500 ohm. Calculate the resistance and
inductance of AB.
Derive the relation used and draw the vector diagram for balanced condition of the bridge.

[400 Ω ; 0.48 H] (Elect. Measurements, Poona Univ.)
7. In a balanced bridge network, AB is a resistance of 500 ohm in series with an inductance of 0.18

henry, the non-inductive resistances BC and DA have values of 1000 ohm and arm CD consists of
a capacitance of C in series with a resistance R. A potential difference of 5 volts at a frequency
5000 2/ π  is the supply between the points A and C. Find out the values of R and C and draw the
vector diagram.            [472 Ω ; 0.235 μF] (Elect. Measurements, Poona Univ.)

8. A sample of bakelite was tested by the Schering bridge method at 25 kV, 50-Hz. Balance was
obtained with a standard capacitor of 106 pF capacitance, a capacitor of capacitance 0.4 μF in parallel
with a non-reactive resistor of 318 Ω  and a non-reactive resistor of 120 Ω . Determine the capacitance,
the equivalent series resistance and the power factor of the specimen. Draw the phase or diagram for
the balanced bridge.    [281 pF ; 0.452 M Ω ; 0.04] (Elect. Measurements-II; Bangalore Univ.)

9. The conditions at balance of a Schering bridge set up to measure the capacitance and loss angle
of a paper dielectric capacitor are as follows:

  f = 500 Hz
Z1 = a pure capacitance of 0.1 μF
Z2 = a resistance of 500 Ω  shunted by a capacitance of 0.0033 μF
Z3 = pure resistance of 163 Ω
Z4 = the capacitor under test

Calculate the approximate values of the loss resistance of the capacitor assuming–
(a) series loss resistance (b) shunt loss resistance. [5.37 Ω , 197,000 Ω ] (London Univ.)

10. Name and draw the bridge used for measurements of Inductance. (Anna University, April 2002)
11. A Wheat-stone bridge network has the following resistances :

AB = 10Ω, BC = 15Ω, CD = 25Ω, DA = 20Ω and BD = 10Ω.
(V.T.U., Belgaum Karnataka University, February 2002)

OBJECTIVE TESTS – 16

1. Maxwell-Wien bridge is used for measuring
(a) capacitance (b) dielectric loss
(c) inductance (d) phase angle

2. Maxwell’s L/C bridge is so called because
(a) it employs L and C in two arms
(b) ratio L/C remains constant
(c) for balance, it uses two opposite

impedances in opposite arms
(d) balance is obtained when L = C

3. ........ bridge is used for measuring an
unknown inductance in terms of a known
capacitance and resistance.
(a) Maxwell’s L/C (b) Hay’s
(c) Owen (d) Anderson

4. Anderson bridge is a modification of .......
bridge.
(a) Owen (b) Hay’s
(c) De Sauty (d) Maxwell-Wien

5. Hay’s bridge is particularly useful for
measuring
(a) inductive impedance with large phase angle
(b) mutual inductance
(c) self inductance
(d) capacitance and dielectric loss

6. The most useful ac bridge for comparing
capacitances of two air capacitors is .........
bridge.
(a) Schering (b) De Sauty
(c) Wien series (d) Wien parallel

7. Heaviside-Campbell Equal Ratio bridge is
used for measuring
(a) self-inductance in terms of mutual

inductance
(b) capacitance in terms of inductance
(c) dielectric loss of an imperfect capacitor
(d) phase angle of a coil
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