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6.1. Absolute and Relative Permeabilities of a Medium

The phenomena of magnetism and electromagnetism are dependent upon a certain property of
the medium called its permeability.  Every medium is supposed to possess two permeabilities :

(i) absolute permeability (μ) and (ii) relative permeability (μr).
For measuring relative permeability, vacuum or free space is chosen as the reference medium.  It

is allotted an absolute permeability of μ0 = 4π × 10−7 henry/metre.  Obviously, relative permeability
of vacuum with reference to itself is unity.  Hence, for free space,

absolute permeability μ0 = 4π × 10−7 H/m
relative permeability μr = 1.
Now, take any medium other than vacuum.  If its relative permeability, as compared to vacuum is

μr, then its absolute permeability is μ = μ0 μr H/m.

6.2. Laws of Magnetic Force
Coulomb was the first to determine experimentally the quantitative expression for the magnetic

force between two isolated point poles.  It may be noted here that, in view of the fact that magnetic
poles always exist in pairs, it is impossible, in practice, to get an isolated pole.  The concept of an
isolated pole is purely theoretical.  However, poles of a thin but long magnet may be assumed to be
point poles for all practical purposes (Fig. 6.1).  By using a torsion balance, he found that the force
between two magnetic poles placed in a medium is

(i) directly proportional to their pole strengths
(ii) inversely proportional to the square of the distance between them and

(iii) inversely proportional to the absolute permeability of the surrounding medium.

Fig. 6.1 Fig. 6.2

For example, if m1 and m2 represent the magnetic strength of the two poles (its unit as yet being
undefined), r the distance between them (Fig. 6.2) and μ the absolute permeability of the surrounding
medium, then the force F is given by

F ∝ 1 2
2µ

m m
r

or F = 1 2
2

m mk
rμ

or F
→

 = ^1 2
2

k m m r
rμ

in vector from

where ^r  is a unit vector to indicate direction of r.

or F
→

= 1 2
3

m m
k r

r
→  where F

→
 and r

→
 are vectors

In the S.I. system of units, the value of the constant k is = 1/4π.
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In vector form, F
→
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If, in the above equation,

m1 = m2 = m (say) ; r = 1 metre ; F = 
0

1
4π μ
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Then m2 = 1 or m = ± 1 weber*
Hence, a unit magnetic pole may be defined as that pole which when placed in vacuum at a

distance of one metre from a similar and equal pole repels it with a force of 1/4π μ0 newtons.**

6.3. Magnetic Field Strength (H)
Magnetic field strength at any point within a magnetic field is numerically equally to the force

experienced by a N-pole of one weber placed at that point.  Hence, unit of H is N/Wb.
Suppose, it is required to find the field intensity at a point A distant r metres from a pole of m

webers.  Imagine a similar pole of one weber placed at point A.  The force experienced by this pole is

F = 2
0

1
4

m
r

×
πμ

N ∴ H = 3
04

m
rπμ

N/Wb (or A/m)*** or oersted.

Also, if a pole of m Wb is placed in a uniform field of
strength H N/Wb, then force experienced by the pole is = mH
newtons.

It should be noted that field strength is a vector quantity
having both magnitude and direction

∴ H
→

= 2
04

m
rπμ

r̂  = 3
04

m r
r

 

  

It would be helpful to remember that following terms are
sometimes interchangeably used with field intensity :
Magnetising force, strength of field, magnetic intensity and
intensity of magnetic field.

6.4. Magnetic Potential
The magnetic potential at any point within a mag-

netic field is measured by the work done in shifting a
N-pole of one weber from infinity to that point against
the force of the magnetic field.  It is given by

M =
04

m
rπμ

J/Wb

...(Art. 4.13)
It is a scalar quantity.

6.5. Flux per Unit Pole

A unit N-pole is supposed to radiate out a flux of one weber.  Its symbol is Φ.  Therefore, the flux
coming out of a N-pole of m weber is given by

Φ = m Wb

* To commemorate the memory of German physicist Wilhelm Edward Weber (1804-1891).
** A unit magnetic pole is also defined as that magnetic pole which when placed at a distance of one metre

from a very long straight conductor carrying a current of one ampere experiences a force of 1/2π newtons
(Art. 6.18).

*** It should be noted that N/Wb is the same thing as ampere/metre (A/m) or just A/m cause ‘turn’ has no units

Magnetic lines of force
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6.6. Flux Density (B)

It is given by the flux passing per unit area through a plane at right angles to the flux.  It is usually
designated by the capital letter B and is measured in weber/meter2.  It is a Vector Quantity.

It ΦWb is the total magnetic flux passing normally through an area of A m2, then
B = Φ/AWb/m2  or  tesla (T)

Note.  Let us find an expression for the flux density at a point distant r metres from a unit N-pole (i.e. a pole
of strength 1 Wb.) Imagine a sphere of radius r metres drawn round the unit pole. The flux of 1 Wb radiated out
by the unit pole falls normally on a surface of 4πr2.m2. Hence

B = 2
1

4A r
Φ =

π
Wb/m2

6.7. Absolute Permeability (μμμμμ) and Relative Permeability (μμμμμrr)

In Fig. 6.3 is shown a bar of a magnetic material, say, iron placed in a uniform field of strength H
N/Wb.  Suppose, a flux density of B Wb/m2 is developed in the rod.

Fig. 6.3

Then, the absolute permeability of the material of the rod is defined as
μ = B/H henry/metre or B = μH = µ0 µr H Wb/m2 ...(i)

When H is established in air (or vacuum), then corresponding flux density developed in air is
B0 = µ0 H

Now, when iron rod is placed in the field, it gets magnetised by induction.  If induced pole
strength in the rod is m Wb, then a flux of m Wb emanates from its N-pole, re-enters its S-pole and
continues from S to N-pole within the magnet.  If A is the face or pole area of the magentised iron bar,
the induction flux density in the rod is

Bi = m/A Wb/m2

Hence, total flux density in the iron rod consists of two parts [Fig. 6.3 (b)].
(i) B0 –flux density in air even when rod is not present

(ii) Bi –induction flux density in the rod
B = B0 + Bi = µ0 H + m/A

Eq. (i) above may be written as B = µr . µ0 H = µr B0

∴ µr =
0 0

(material)
(vacuum)

BB
B B

= ...for same H

Hence, relative permeability of a material is equal to the ratio of the flux density produced in
that material to the flux density produced in vacuum by the same magnetising force.

6.8. Intensity of Magnetisation (I)

It may be defined as the induced pole strength developed per unit area of the bar.  Also, it is the
magnetic moment developed per unit volume of the bar.

Let m = pole strength induced in the bar in Wb
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A = face or pole area of the bar in m2

Then I = m/A Wb/m2

Hence, it is seen that intensity of magnetisation of a substance may be defined as the flux density
produced in it due to its own induced magnetism.

If l is the magnetic length of the bar, then the product (m ×  l) is known as its magnetic moment M.

∴ I = m lm M
A A l V

×= =
×

 = magnetic moment/volume

6.9. Susceptibility (K)

Susceptibility is defined as the ratio of intensity of magnetisation I to the magnetising force H.
∴ K = I/H henry/metre.

6.10. Relation Between B, H, I and K
It is obvious from the above discussion in Art. 6.7 that flux density B in a material is given by

B = B0 + m/A = B0 + I ∴ B = μ0 H + I

Now absolute permeability is µ = 0
0µ

H IB I
H H H

μ +
= = + ∴  µ = µ0 + K

Also µ = µ0 µr ∴ µ0 µr = µ0 + K  or  µr = 1 + K/µ0
For ferro-magnetic and para-magnetic substances, K is positive and for diamagnetic substances,

it is negative.  For ferro-magnetic substance (like iron, nickel, cobalt and alloys like nickel-iron and
cobalt-iron) μr is much greater than unity whereas for para-magnetic substances (like aluminium), rµ
is slightly greater than unity.  For diamagnetic materials (bismuth) µr < 1.

Example 6.1.  The magnetic susceptibility of oxygen gas at 20ºC is 167 ×  10−11 H/m. Calculate
its absolute and relative permeabilities.

Solution. μr =
11

7
0

167 101 1
4 10

K −

−
×+ = +

μ π ×
 = 1.00133

Now, absolute permeability µ= µ0 µr = 4π ×  10−7 ×  1.00133 = 12.59 ×××××  10−−−−−7 H/m

6.11. Boundary Conditions
The case of boundary conditions between two materials of

different permeabilities is similar to that discussed in Art. 4.19.
As before, the two boundary conditions are
(i) the normal component of flux density is continuous across

boundary. B1n = B2n ...(i)
(ii) the tangential component of H is continuous across

boundary H1t = H2t
As proved in Art. 4.19, in a similar way, it can be shown

that 1

2

tan
tan

θ
θ

= 1

2

μ
μ

This is called the law of magnetic flux refraction.

6.12. Weber and Ewing’s Molecular Theory
This theory was first advanced by Weber in 1852 and was, later on, further
developed by Ewing in 1890.  The basic assumption of this theory is that
molecules of all substances are inherently magnets in themselves, each having
a N and S pole.  In an unmagnetised state, it is supposed that these small molecular

Fig. 6.4

Fig. 6.5
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magnets lie in all sorts of haphazard manner forming
more or less closed loops (Fig. 6.5).  According to the
laws of attraction and repulsion, these closed magnetic
circuits are satisfied internally, hence there is no resultant
external magnetism exhibited by the iron bar.  But when
such an iron bar is placed in a magnetic field or under the influence of
a magnetising force, then these molecular magnets start turning round
their axes and orientate themselves more or less along straight lines
parallel to the direction of the magnetising force.  This linear
arrangement of the molecular magnets results in N polarity at one end
of the bar and S polarity at the other (Fig. 6.6).  As the small magnets
turn more nearly in the direction of the magnetising force, it requires
more and more of this force to produce a given turning moment, thus
accounting for the magnetic saturation.  On this theory, the hysteresis
loss is supposed to be due to molecular friction of these turning
magnets.

Because of the limited knowledge of molecular structure available
at the time of Weber, it was not
possible to explain firstly, as to
why the molecules themselves are
magnets and secondly, why it is
impossible to magnetise certain
substances like wood etc.  The first objection was explained by
Ampere who maintained that orbital movement of the electrons
round the atom of a molecule constituted a flow of current which,
due to its associated magnetic effect, made the molecule a magnet.
Later on, it became difficult to explain the phenomenon of

diamagnetism (shown by materials like water, quartz, silver and
copper etc.) erratic behaviour of ferromagnetic (intensely
magnetisable) substances like iron, steel, cobalt, nickel and some
of their alloys etc. and the paramagnetic (weakly magnetisable)

substances like oxygen and aluminium etc.  Moreover, it was asked : if molecules of all substances are
magnets, then why does not wood or air etc. become magnetised ?

All this has been explained satisfactorily by the atom-domain theory which has superseded the
molecular theory.  It is beyond the scope of this book to go into the details of this theory.  The
interested reader is advised to refer to some standard book on magnetism.  However, it may just be
mentioned that this theory takes into account not only the planetary motion of an electron but its
rotation about its own axis as well.  This latter rotation is called ‘electron spin’.  The gyroscopic
behaviour of an electron gives rise to a magnetic moment which may be either positive or negative.  A
substance is ferromagnetic or diamagnetic accordingly as there is an excess of unbalanced positive
spins or negative spins.  Substances like wood or air are non-magnetisable because in their case, the
positive and negative electron spins are equal, hence they cancel each other out.

6.13. Curie Point
As a magnetic material is heated, its molecules vibrate

more violently.  As a consequence, individual molecular
magnets get out of alignment as the temperature is increased,
thereby reducing the magnetic strength of the magnetised
substance.  Fig. 6.7 shows the approximate decrease of mag-
netic strength with rise in temperature.  Obviously, it is pos-
sible to partially or even completely destroy the magnetic
properties of a material by heating.  The temperature at which
the vibrations of the molecular magnets become so random

Fig. 6.6

Fig. 6.7

Molecular magnets which are
randomly arranged in the
unmagnetised state, get ori-
ented under the influence of an
external magnetizing force

An iron nail converts into a magnet
as soon as the external magnetizing

force starts acting on it



Magnetism and  Electromagnetism 263

and out of alignment as to reduce the magnetic strength to zero is called Curie point.  More accu-
rately, it is that critical temperature above which ferromagnetic material becomes paramagnetic.

ELECTROMAGNETISM

6.14 . Force on a Current-carrying Conductor Lying in a Magnetic Field
It is found that whenever a current-carrying conductor is placed in magnetic field, it experiences

a force which acts in a direction perpendicular both to the direction of the current and the field.  In
Fig. 6.8 is shown a conductor XY lying at right angles to the uniform horizontal field of flux density B
Wb/m2 produced by two solenoids A and B.  If l is the length of the conductor lying within this field
and I ampere the current carried by it, then the magnitude of the force experienced by it is

F = BIl = µ0 µr HIl newton
Using vector notation F

→
 = I l B

→ →
×  and F = IlB sin θ where θ is the angle between l

→
and B

→
which

is 90º in  the present case
or F = Il B sin 90º = Il B newtons (∵   sin 90º = 1)
The direction of this force may be easily found by Fleming’s left-hand rule.

Fig. 6.8 Fig. 6.9

Hold out your left hand with forefinger, second finger and thumb at right angles to one another.
If the forefinger represents the direction of the field and
the second finger that of the current, then thumb gives the
direction of the motion. It is illustrated in Fig. 6.9.

Fig. 6.10 shows another method of finding the direc-
tion of force acting on a current carrying conductor. It is
known as Flat Left Hand rule. The force acts in the direc-
tion of the thumb obviously, the direction of motor of the
conductor is the same as that of the force.

It should be noted that no force is exerted on a con-
ductor when it lies parallel to the magnetic field. In gen-
eral, if the conductor lies at an angle θ with the direction
of the field, then B can be resolved into two components,
B cos θ parallel to and B sin θ perpendicular to the con-
ductor. The former produces no effect whereas the latter is
responsible for the motion observed. In that case,

F = BIl sin θ newton, which has been expressed as
cross product of vector above.*

* It is simpler to find direction of Force (Motion) through cross product of given vectors I l
→

 and B
→

.

Fig. 6.10
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Fig. 6.13

6.15. Ampere’s Work Law or Ampere’s Circuital Law

The law states that m.m.f.* (magnetomotive force corre-
sponding to e.m.f. i.e. electromotive force of electric field) around
a closed path is equal to the current enclosed by the path.
Mathematically,  .H d s

→ →∫ = I amperes where H
→

 is the vector

representing magnetic field strength in dot product with vector

d s→ of the enclosing path S around current I ampere and that is

why line integral (“) of dot product .H d s
→ →  is taken.

Work law is very comprehensive and is applicable to all magnetic fields whatever the shape of
enclosing path e.g. (a) and (b) in Fig. 6.11.  Since path c does not enclose the conductor, the m.m.f.
around it is zero.

The above work Law is used for obtaining the value of the magnetomotive force around simple
idealized circuits like (i) a long straight current-carrying conductor and (ii) a long solenoid.

(i) Magnetomotive Force around a Long Straight Conductor
In Fig. 6.12 is shown a straight conductor

which is assumed to extend to infinity in either
direction.  Let it carry a current of I amperes
upwards.  The magnetic field consists of circular
lines of force having their plane perpendicular to
the conductor and their centres at the centre of the
conductor.

Suppose that the field strength at point C
distant r metres from the centre of the conductor is
H.  Then, it means that if a unit N-pole is placed at
C, it will experience a force of H newtons.  The
direction of this force would be tangential to the
circular line of force passing through C.  If this
unit N-pole is moved once round the conductor
against this force, then work done i.e.

m.m.f. = force ×  distance = I
i.e. I = H ×  2π r joules = Amperes

or H = 
2

I
rπ

= .H d s
→ →∫  Joules = Amperes = I

Obviously, if there are N conductors (as shown in Fig. 6.13), then

H =
2
NI

rπ
A/m or Oersted

and B = µ0 2
NI

rπ
Wb/m2 tesla ...in air

= 0
2

r NI
r

μ μ
π

 Wb/m2 tesla ...in a medium

Fig. 6.11

** M.M.F. is not a force, but is the work done.

Fig. 6.12
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(ii) Magnetic Field Strength of a Long Solenoid
Let the Magnetic Field Strength along the axis of the sole-

noid be H.  Let us assume that
(i) the value of H remains constant throughout the length l

of the solenoid and
(ii) the volume of H outside the solenoid is negligible.
Suppose, a unit N-pole is placed at point A outside the sole-

noid and is taken once round the completed path (shown dotted
in Fig. 6.14) in a direction opposite to that of H.  Remembering
that the force of H newtons acts on the N-pole only
over the length l (it being negligible elsewhere), the
work done in one round is

= H ×  l joules = Amperes
The ‘ampere-turns’ linked with this path are NI

where N is the number of turns of the solenoid and I
the current in amperes passing through it.  Accord-
ing to Work Law

 H ×  l = NI or H = NI
l

A/m or Oersted

Also  B = 0 NI
l

μ Wb/m2 or tesla ...in air

= 0 r NI
l

μ μ
Wb/m2 or tesla ...in a medium

6.16. Biot-Savart Law*

The expression for the magnetic field strength dH produced at point P by a vanishingly small
length dl of a conductor carrying a current of I amperes (Fig. 6.15) is given by

dH = 2
sin

4
Idl

r
θ

π
A/m

or dH
→

= 2^( ) / 4Id l r r
→

× π  in vector form

The direction of dH
→

 is perpendicular to the plane

containing both ‘ d l
→

’ and r→  i.e. entering.
or dB0 = 0

24
Idl
r

μ
π

sin θ Wb/m2

and 0dB
→

=
^

0
24

I d l r
r

→ →
μ ×

π
 in vector form

6.17. Applications of Biot-Savart Law

(i) Magnetic Field Strength Due to a Finite Length of Wire Carrying Current
Consider a straight wire of length l carrying a steady current I.  We wish to find magnetic field

strength (H) at a point P which is at a distance r from the wire as shown in Fig. 6.16.

Fig. 6.14

Magnetic field around a coil
carrying electric current

* After the French mathematician and physicist Jean Baptiste Biot (1774-1862) and Felix Savart
(1791-1841) a well-known French physicist.

Fig. 6.15
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Fig. 6.17

The magnetic field strength dH
→

 due to a small element dl of the wire shown is

dH
→

=
^

24
I d l s

s

→ →
×

π
 (By Biot-Savart Law)

or dH
→

= ^
2

sin
4
Idl u

s
θ

π ×
(where û  is unit vector perpendicular to

plane containing d l
→

and ŝ and into the plane.)

or dH
→

= ^
2

cos
4

Idl u
s

φ
π

...[∵  θ and φ are complementary angles]

The magnetic field strength due to entire length l :

H
→

= ^
2

0

cos
4

l
dlI u

s

⎡ ⎤φ⎢ ⎥
π ⎢ ⎥⎣ ⎦

∫

= ^
2

0

/
4

l
I r s dl u

s

⎡ ⎤
⎢ ⎥

π ⎢ ⎥⎣ ⎦
∫ ( )cos = in Fig. 6.16r

s
φ 

= ^ ^
3 2 2 3/ 2

0 0
4 4 ( )

l l
Ir dl Ir dlu u

s r l

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=

π π⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦
∫ ∫

(∵  r is constant) ; s = 2 2r l+  in Fig. 6.16

= ^
3 2

04 [1 ( / ) ]3 / 2

l
Ir dl u

r r l

⎡ ⎤
⎢ ⎥
⎢ ⎥π +⎣ ⎦
∫ (Taking r3 out from denominator)

To evaluate the integral most simply, make the following substitution

l
r = tan φ in Fig. 6.16

∴ l = r tan φ   ∴  dl = r sec2 φ dφ and 1 + (r/l )2 = 1 + tan2 φ = sec2 φ and limits get transformed
i.e. become 0 to φ.

H
→

=   
2 2

^ ^ ^
3 2 3 0

0 0

sec 1cos sin
44 sec 4

rIr Ird u d u u
rr r

  
                

            
  

= ^sin
4

I u
r

φ
π

N.B.  For wire of infinite length extending it at both ends i.e. −∞ to + ∞ the limits of integration would be
^ ^to , giving 2 or

2 2 4 2
I IH u H u

r r

→ →π π− + = × =
π π

.

(ii) Magnetic Field Strength along the Axis of a
Square Coil

This is similar to (i) above except that there are four
conductors each of length say, 2a metres and carrying a
current of I amperes as shown in Fig. 6.17.  The Mag-
netic Field Strengths at the axial point P due to the op-
posite sides ab and cd are Hab and Hcd directed at right
angles to the planes containing P and ab and P and cd
respectively.  Now, Hab and H cd are numerically equal,

Fig. 6.16
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hence their components at right angles to the axis of the coil will cancel out, but the axial components
will add together.  Similarly, the other two sides da and bc will also give a resultant axial component
only.

As seen from Eq. (ii) above,

Hab =
4

I
rπ

[cos θ − cos (180º − θ)] = . 2cos cos
4 2

I I
r r

θ θ=
π π

Now r = 2 2a x+ ∴ Hab = 
2 2

. cos

2

I

a x

θ

π +

Its axial components is Hab′ = Hab . sin α = 
2 2

cos . sin
2

I

a x

θ α
π +

All the four sides of the rectangular coil will contribute an equal amount to the resultant magnetic
field at P.  Hence, resultant magnetising force at P is

H =
2 2

cos4 . sin
2

I

a x

θ× α
π +

,

Now cos θ =
2 2(2 )
a

a x+
and sin α = 

2 2
a

a x+

∴ H =
2

2 2 2 2

2 .

( ) . 2

a I

a x x aπ + +
AT/m.

In case, value of H is required at the centre O of the coil, then putting x = 0 in the above expres-
sion,
we get H =

2

2
2 . 2 .

. 2 .
a I I

aa a
=

ππ
AT/m

Note.  The last result can be found directly as under.  As seen from Fig. 6.18, the field at point O due to any
side is, as given by Eq. (i)

= 
/ 4

45º
45º

/ 4

2sin . cos . 2cos 45º .
4 4 4 4 2

I I I Id
a a a a

−π
−

π

θ θ = − θ = =
π π π π∫

Resultant magnetising force due to all sides is

 H = 21 24 .
4 2

I
a a

× =
π π

AT/m ...as found above

(iii) Magnetising Force on the Axis of a Circular Coil
In Fig. 6.19 is shown a circular one-turn coil carrying a current of I

amperes.  The magnetising force at the axial point P due to a small element ‘dl’ as given by Laplace’s
Law is

dH
→

= 2 24 ( )
Idl
r xπ +

The direction of dH is at right angles to the line AP join-
ing point P to the element ‘dl’.  Now, dH can be resolved into
two components :

(a) the axial component dH′  = dH sin θ
(b) the vertical component dH″  = dH cos θ
Now, the vertical component dH cos θ will be cancelled by an equal and opposite vertical com-

ponent of dH due to element ‘dl’ at point B.  The same applies to all other diametrically opposite pairs
of dl’s taken around the coil.  Hence, the resultant magnetising force at P will be equal to the sum of
all the axial components.

Fig. 6.18

Fig. 6.19
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* Because l sin θ = r ∴ l = r/sin θ.  Now, M/N = l.dθ = r dθ/sin θ.  Also, MN = dx, sin θ, hence dx = r dθ/sin2 θ.

∴ H = 2 2 3/ 2
. .sin

4 ( )
I dl rdH dH dl dl
r x

′ = θ =
π +

Σ Σ Σ∫ ∫ 2 2
sin r

r x
⎛ ⎞θ =⎜ ⎟+⎝ ⎠
 

=
22

2 2 3/ 2 2 2 3/ 2 2 2 3/ 20

. . . 2
4 ( ) 4 ( ) 2 ( )

rI r I r r Irdl
r x r x r x

π π= =
π + π + +∫

=
3

2 2 3/ 2.
2 ( )
I r
r r x+

∴ H = 
3sin

2
I

r
θ AT/m

or H =
2
NI

r
sin3 θ AT/m –for an N-turn coil ...(iii)

In case the value of H is required at the centre O of the coil, then putting θ = 90° and sin θ = 1 in
the above expression, we get

H =
2
I
r

 – for single-turn coil or H = 
2
NI

r
–for N-turn coil

Note.  The magnetising force H at the centre of a circular coil can be directly found as follows :
With reference to the coil shown in the Fig. 6.20, the magnetising force dH produced at O due to

the small element dl (as given by Laplace’s law) is

dH = 2 2
. sin .
4 4

I dl I dl
r r

θ =
π π (∵  sin θ = sin 90º = 1)

∴ Σ dH = 2 2
.

4 4
I dl I dl

r r
=

π π
Σ Σ or H = 2

. 2
24

I r I
rr

π =
π

∴ H =
2
I
r

AT/m  –for 1-turn coil ; 
2
NI

r
AT/m  –for N-turn coil.

(iv) Magnetising Force on the Axis of a Short Solenoid
Let a short solenoid having a length of l

and radius of turns r be uniformly wound with
N turns each carrying a current of I as shown
in Fig. 6.21. The winding density i.e. num-
ber of turns per unit length of the solenoid is
N/l. Hence, in a small element of length dx,
there will be N.dx/l turns. Obviously, a very
short element of length of the solenoid can
be regarded as a concentrated coil of very
short axial length and having N.dx/l turns. Let
dH be the magnetising force contributed by
the element dx at any axial point P.  Then, substituting dH for H and N.dx/l for N in Eq. (iii), we get

dH = 3. . . sin
2

N dx I
l r

θ

Now dx . sin θ = r . dθ/sin θ* ∴ dx = r . dθ/sin2 θ
Substituting this value of dx in the above equation, we get

dH =
2
NI

l
 sin θ . dθ

Total value of the magnetising force at P due to the whole length of the solenoid may be found by
integrating the above expression between proper limits.

Fig. 6.20

Fig. 6.21



Magnetism and  Electromagnetism 269

∴ H = 2 2

11

sin . cos
2 2
NI NId

l l
θ θ

θθ
θ θ = − θ∫

=
2
NI

l
 (cos θ1 − cos θ2) ...(iv)

The above expression may be used to find the value of H at any point of the axis, either inside or
outside the solenoid.

(i) At mid-point, θ2 = (π − θ1), hence cos θ2 = − cos θ1

∴ H = 2
2
NI
l

cos θ1 = NI
l

cos θ1

Obviously, when the solenoid is very long, cos θ1 becomes nearly unity.  In that case,
H = NI

l
AT/m –Art. 6.15 (ii)

(ii) At any point on the axis inside a very long solenoid but not too close to either end, θ1 ≅  0 and
θ2 ≅  π so that cos θ1 ≅  1 and cos θ2 = − 1.  Then, putting these values in Eq. (iv) above, we have

H ≅
2
NI

l
×  2 = NI

l
It proves that inside a very long solenoid, H is practically constant at all axial points excepts

those lying too close to either end of the solenoid.
(iii) Towards either end of the solenoid, H decreases and exactly at the ends, θ1 = π/2 and θ2 ≅  π,

so that cos θ1 = 0 and cos θ2 = −1.  Hence, from Eq. (iv) above, we get
H =

2
NI

l
In other words, value of H is decreased to half the normal value well inside the solenoid.
Example 6.2.  Calculate the magnetising force and flux density at a distance of 5 cm from a

long straight circular conductor carrying a current of 250 A and placed in air.  Draw a curve show-
ing the variation of B from the conductor surface outwards if its diameter is 2 mm.

Solution.  As seen from Art. 6.15 (i),

H = 250
2 2 0.05

I
r

= =
π π ×

795.6 AT/m

B = µ0 H = 4π × 10−7 ×  795.6 = 10−−−−−3 Wb/m2

In general, B = 0
2

I
r

μ
π

Now, at the conductor surface, r = 1 mm = 10−3 m

∴             B   =
7

3
4 10 250

2 10

−

−
π × ×

π ×
 = 0.05 Wb/m2

The variation of B outside the conductor is shown in Fig. 6.22.
Example 6.3.  A wire 2.5 m long is bent (i) into a square and (ii) into a circle.  If the current

flowing through the wire is 100 A, find the magnetising force at the centre of the square and the
centre of the circle. (Elec. Measurements; Nagpur Univ. 1992)

Solution.  (i) Each side of the square is 2a = 2.5/4 = 0.625 m
Value of H at the centre of the square is [Art 6.17 (ii)]

= 2 2 100
0.3125

I
a

×=
π π ×

 = 144 AT/m (ii)  2πr = 2.5 ; r = 0.398 m

Value of H at the centre is = I/2r = 100/2 ×  0.398 = 125.6 AT/m

Fig. 6.22
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Fig. 6.23

Example 6.4.  A current of 15 A is passing along a straight wire.  Calculate the force on a unit
magnetic pole placed 0.15 metre from the wire.  If the wire is bent to form into a loop, calculate the
diameter of the loop so as to produce the same force at the centre of the coil upon a unit magnetic
pole when carrying a current of 15 A. (Elect. Engg. Calcutta Univ.)

Solution.  By the force on a unit magnetic pole is meant the magnetising force H.
For a straight conductor [Art 6.15 (i)] H = I/2 π r = 15/2π ×  0.15 = 50/π AT/m
Now, the magnetising force at the centre of a loop of wire is [Art. 6.17 (iii)]

= I/ 2r = I/D = 15/D AT/m
Since the two magnetising forces are equal
∴ 50/π = 15/D; D = 15 π/50 = 0.9426 m = 94.26 cm.
Example. 6.5.  A single-turn circular coil of 50 m. diameter carries a direct current of 28 ×  104

A.  Assuming Laplace’s expression for the magnetising force due to a current element, determine the
magnetising force at a point on the axis of the coil and 100 m. from the coil.  The relative permeabil-
ity of the space surrounding the coil is unity.

Solution.  As seen from Art 6.17 (iii), H = 
2
I
r

 . sin3 θ AT/m

Here sin θ =
2 2 2 2

25 0.2425
25 100

r
r x

= =
+ +

sin3 θ = (0.2425)3 = 0.01426 ∴ H = 
428 10 0.01426

2 25
   
 76.8 AT/m

6.18. Force Between Two Parallel Conductors

(i) Currents in the same direction. In Fig.
6.23 are shown two parallel conductors P and Q
carrying currents I1 and I2 amperes in the same
direction i.e. upwards.  The field strength in the
space between the two conductors is decreased due
to the two fields there being in opposition to each
other.  Hence, the resultant field is as shown in the
figure.  Obviously, the two conductors are
attracted towards each other.

(ii) Currents in opposite directions.  If, as
shown in Fig. 6.24, the parallel conductors carry
currents in opposite directions, then field strength
is increased in the space between the two conduc-
tors due to the two fields being in the same direc-
tion there.  Because of the lateral repulsion of the
lines of the force, the two conductors experience a mutual force of repulsion as shown separately in
Fig. 6.24 (b).

6.19. Magnitude of Mutual Force

It is obvious that each of the two parallel conductors lies in the magnetic field of the other
conductor.  For example, conductor P lies in the magnetic field of Q and Q lies in the field of P.  If ‘d’
metres is the distance between them, then flux density at Q due to P is [Art. 6.15 (i)]

B  =  0 1
2

I
d

μ
π Wb/m2
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If l is the length of conductor Q lying in this
flux density, then force (either of attraction or
repulsion) as given in Art. 6.14 is

F = BI2 l newton or F = 0 1 2
2

I I l
d

μ
π N

Obviously, conductor P will experience an
equal force in the opposite direction.

The above facts are known as Laws of Paral-
lel Currents and may be stated as follows :

(i) Two parallel conductors attract each other
if currents through them flow in the same
direction and repel each other if the cur-
rents through them flow in the opposite
directions.

(ii) The force between two such parallel con-
ductors is proportional to the product of
current strengths and to the length of the conductors considered and varies inversely as the
distance between them.

6.20. Definition of Ampere

If has been proved in Art. 6.19 above that the force between two infinitely long parallel cur-
rently-carrying conductors is given by the expression

F = 0 1 2
2
I I l

d
μ

π
N or F = 

7
71 2 1 24 10

2 10
2

I I l I I
d d

−
−π ×

= ×
π

N

The force per metre run of the conductors is

F = 7 1 22 10
I I

d
−× N/m

If I1 = I2 = 1 ampere (say) and d = 1 metre, then F = 2 ×  10−7 N
Hence, we can define one ampere current as that current which when flowing in each of the two

infinitely long parallel conductors situated in vacuum and separated 1 metre between centres,
produces on each conductor a force of 2 ×××××  10−−−−−7 N per metre length.

Example 6.6.  Two infinite parallel conductors carry parallel currents of 10 amp. each.  Find
the magnitude and direction of the force between the conductors per metre length if the distance
between them is 20 cm. (Elect. Engg. Material - II Punjab Univ. May 1990)

Solution. F = 2 ×  10−7 10 10 1
0.2

× × N = 10−−−−−4 N

The direction of force will depend on whether the two currents are flowing in the same direction
or in the opposite direction.  As per Art. 6.19, it would be a force of attraction in the first case and that
or repulsion in the second case.

Example 6.7.  Two long straight parallel wires, standing in air 2 m apart, carry currents I1 and
I2 in the same direction.  The magnetic intensity at a point midway between the wires is 7.95 AT/m.  If
the force on each wire per unit length is 2.4 ×  10−4 N, evaluate I1 and I2.

Solution.  As seen from Art. 6.17, the magnetic intensity of a long straight current-carrying
conductor is

H =
2

I
rπ

AT/m

Fig. 6.24
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* Strictly speaking, it should be only ‘ampere’ because turns have no unit.

Fig. 6.25

Also, it is seen from Fig. 6.23 that when the two currents flow in the same direction, net field
strength midway between the two conductors is the difference of the two field strengths.

Now, H1 = I1/2π and H2 = I2/2π because r = 2/1 = 2 metre

∴ 1 2
2 2
I I

−
π π

= 7.95 ∴ I1 − I2 = 50 ...(i)

Force per unit length of the conductors is F = 2 ×  10−7 I1I2/d newton
∴ 2.4 ×  10−4 = 2 ×  10−7 I1I2/2 ∴ I1I2 = 2400 ...(ii)
Substituting the value of I1 from (i) in (ii), we get

(50 + I2)I2 = 2400 or I2
2 + 50I2 − 2400 = 0

or (I2 + 80) (I2 − 30) = 0 ∴ I2 = 30 A and  I1 = 50 + 30 = 80 A

Tutorial Problems No. 6.1
1. The force between two long parallel conductors is 15 kg/metre.  The conductor spacing is 10 cm.  If

one conductor carries twice the current of the other,  calculate the current in each conductor.
[6,060 A; 12,120 A]

2. A wire is bent into a plane to form a square of 30 cm side and a current of 100 A is passed through it.
Calculate the field strength set up at the centre of the square.                                        [300 AT/m]

                                    (Electrotechnics - I, M.S. Univ. Baroda )

MAGNETIC CIRCUIT

6.21. Magnetic Circuit
It may be defined as the route or path which is followed by magnetic flux.  The law of magnetic

circuit are quite similar to (but not the same as) those of the electric circuit.
Consider a solenoid or a toroidal iron ring having a magnetic path of l metre, area of cross

section A m2 and a coil of N turns carrying I amperes wound anywhere on it as in Fig. 6.25.
Then, as seen from Art. 6.15, field strength inside the solenoid is

H = NI
l

AT/m

Now B = µ0µr H = 0 r NI
l

μ μ Wb/m2

Total flux produce Φ = B ×  A = 0 r A NI
l

μ μ Wb

∴ Φ =
0/ r

NI
l Aμ μ

Wb

The numerator ‘Nl’ which produces magnetization in the magnetic
circuit is known as magnetomotive force (m.m.f.).  Obviously, its unit is ampere-turn (AT)*.  It is
analogous to e.m.f. in an electric circuit.

The denominator 
0 r

l
Aμ μ

is called the reluctance of the circuit and is analogous to resistance in

electric circuits.

∴ flux = m.m.f.
reluctance

or Φ = F
S

Sometimes, the above equation is called the “Ohm’s Law of Magnetic Circuit” because it resembles
a similar expression in electric circuits i.e.



Magnetism and  Electromagnetism 273

current = e.m.f.
resistance

or I = V
R

6.22. Definitions Concerning Magnetic Circuit

1. Magnetomotive force (m.m.f.).  It drives or tends to drive flux through a magnetic circuit
and corresponds to electromotive force (e.m.f.) in an electric circuit.

M.M.F. is equal to the work done in joules in carrying a unit magnetic pole once through the
entire magnetic circuit.  It is measured in ampere-turns.

In fact, as p.d. between any two points is measured by the work done in carrying a unit charge
from one points to another, similarly, m.m.f. between two points is measured by the work done in
joules in carrying a unit magnetic pole from one point to another.

2. Ampere-turns (AT).  It is the unit of magnetometre force (m.m.f.) and is given by the
product of number of turns of a magnetic circuit and the current in amperes in those turns.

3. Reluctance.  It is the name given to that property of a material which opposes the creation of
magnetic flux in it.  It, in fact, measures the opposition offered to the passage of magnetic flux
through a material and is analogous to resistance in an electric circuit even in form.  Its units is
AT/Wb.*

reluctance =
0 r

l l
A A

=
μ μ μ

; resistance = l l
A A

ρ =
σ

In other words, the reluctance of a magnetic circuit is the number of amp-turns required per
weber of magnetic flux in the circuit.  Since 1 AT/Wb = 1/henry, the unit of reluctance is “reciprocal
henry.”

4. Permeance.  It is reciprocal of reluctance and implies the case or readiness with which
magnetic flux is developed.  It is analogous to conductance in electric circuits.  It is measured in terms
of Wb/AT or henry.

5. Reluctivity.  It is specific reluctance and corresponds to resistivity which is ‘specific
resistance’.

6.23.  Composite Series Magnetic Circuit
In Fig. 6.26 is shown a composite series magnetic circuit consisting of three different magnetic

materials of different permeabilities and lengths and one air gap (μr = 1).  Each path will have its own
reluctance.  The total reluctance is the sum of individual reluctances as they are joined in series.

∴ total reluctance =
0 r

l
Aμ μΣ

= 
1 2 3

31 2

0 1 0 2 0 3 0

a

r r r g

l ll l
A A A A

+ + +
μ μ μ μ μ μ μ

∴ flux Φ =

0

m.m.f.

r

l
Aμ μ

6.24. How to Find Ampere-turns ?
It has been shown in Art. 6.15 that H = NI/l AT/m or NI = H ×  l
∴ ampere-turns AT = H ×  l
Hence, following procedure should be adopted for calculating

the total ampere turns of a composite magnetic path.

* From the ratio Φ = m.m.f.
reluctance

, it is obvious that reluctance = m.m.f./Φ.  Since m.m.f. is in ampere-

turns and flux in webers, unit of reluctance is ampere-turn/weber (AT/Wb) or A/Wb.

Fig. 6.26
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(i) Find H for each portion of the composite circuit.  For air, H = B/μ0, otherwise H = B/μ0μr.
(ii) Find ampere-turns for each path separately by using the relation AT = H ×  l.
(iii) Add up these ampere-turns to get the total ampere-turns for the entire circuit.

6.25.   Comparison Between Magnetic and Electric Circuits.

SIMILARITIES
Magnetic Circuit Electric Circuit

Fig. 6.27                                     Fig. 6.28

1. Flux = m.m.f.
reluctance

Current = e.m.f.
resistance

2. M.M.F. (ampere-turns) E.M.F. (volts)
3. Flux Φ (webers) Current I (amperes)
4. Flux density B (Wb/m2) Current density (A/m2)

5. Reluctance S = 
0 r

l l
A A

⎛ ⎞=⎜ ⎟μ μ μ⎝ ⎠
resistance R = l l

A A
ρ =

ρ
6. Permeance (= 1/reluctance) Conductance (= 1/resistance)
7. Reluctivity Resistivity
8. Permeability (= 1/reluctivity) Conductivity (= 1/resistivity)
9. Total m.m.f. = Φ S1 + Φ S2 + Φ S3 + ..... 9.  Total e.m.f. = IR1 + IR2 + IR3 + .....

DIFFERENCES
1. Strictly speaking, flux does not actually ‘flow’ in the sense in which an electric current flows.
2. If temperature is kept constant, then resistance of an electric circuit is constant and is

independent of the current strength (or current density).  On the other hand, the reluctance of a magnetic
circuit does depend on flux (and hence flux density) established in it.  It is so because μ (which equals
the slope of B/H curve) is not constant even for a given material as it depends on the flux density B.
Value of μ is large for low value of B and vice-versa.  Hence, reluctance is small (S = l/μA) for small
values of B and large for large values of B.

3. Flow of current in an electric circuit involves continuous expenditure of energy but in a
magnetic circuit, energy is needed only creating the flux initially but not for maintaining it.

6.26.  Parallel Magnetic Circuits
Fig. 6.29 (a) shown a parallel magnetic circuit consisting of two parallel magnetic paths ACB

and ADB acted upon by the same m.m.f.  Each magnetic path has an average length of 2 (l1 + l2).
The flux produced by the coil wound on the central core is divided equally at point A between the two
outer parallel paths.  The reluctance offered by the two parallel paths is = half the reluctance of each
path.

Fig. 6.29 (b) shows the equivalent electrical circuit where resistance offered to the voltage source
is = RæR = R/2
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Fig. 6.29

It should be noted that reluctance offered by the central core AB has been neglected in the above
treatment.

6.27.  Series-Parallel Magnetic Circuits
Such a circuit is shown in Fig.

6.30 (a).  It shows two parallel mag-
netic circuits ACB and ACD con-
nected across the common magnetic
path AB which contains an air-gap
of length lg.  As usual, the flux Φ in
the common core is divided equally
at point A between the two parallel
paths which have equal reluctance.
The reluctance of the path AB con-
sists of (i) air gap reluctance and (ii)
the reluctance of the central core which comparatively negligible.  Hence, the reluctance of the cen-
tral core AB equals only the air-gap reluctance across which are connected two equal parallel reluc-
tances.  Hence, the m.m.f. required for this circuit would be the sum of (i) that required for the air-gap
and (ii) that required for either of two paths (not both) as illustrated in Ex. 6.19, 6.20 and 6.21.

The equivalent electrical circuit is shown in Fig. 6.30 (b) where the total resistance offered to the
voltage source is = R1 + RæR = R1 + R/2.

6.28.   Leakage Flux and Hopkinson’s Leakage Coefficient

Leakage flux is the flux which follows a path not intended for it.  In
Fig. 6.31 is shown an iron ring wound with a coil and having an air-
gap. The flux in the air-gap is known as the useful flux because it is
only this flux which can be utilized for various useful purposes.

It is found that it is impossible to confine all the flux to the iron
path only, although it is usually possible to confine most of the electric
current to a definite path, say a wire, by surrounding it with insulation.
Unfortunately, there is no known insulator for magnetic flux.  Air,
which is a splendid insulator of electricity, is unluckily a fairly good
magnetic conductor.  Hence, as shown, some of the flux leaks through
air surrounding the iron ring.  The presence of leakage flux can be
detected by a compass.  Even in the best designed dynamos, it is found

Fig. 6.30

Fig. 6.31
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that 15 to 20% of the total flux produced leaks away without being utilised usefully.
If, Φt = total flux produced ; Φ = useful flux available in the air-gap, then

leakage coefficient λ = total flux
useful flux

or λ = tΦ
Φ

In electric machines like motors and generators, magnetic leakage is undesirable, because, al-
though it does not lower their power efficiency, yet it leads to their increased weight and cost of
manufacture.  Magnetic leakage can be minimised by placing the exciting coils or windings as close
as possible to the air-gap or to the points in the magnetic circuit where flux is to be utilized for useful
purposes.

It is also seen from Fig. 6.31 that there is fringing or spreading of lines of flux at the edges of the
air-gap.  This fringing increases the effective area of the air-gap.

The value of λ for modern electric machines varies between 1.1 and 1.25.

6.29.  Magnetisation Curves
The approximate magnetisation curves of a few magnetic materials are shown in Fig. 6.32.
These curves can be determined by the following methods provided the materials are in the

form of a ring :
(a) By means of a ballistic galvanometer and (b) By means of a fluxmeter.

6.30.  Magnetisation Curves by Ballistic Galvanometer
In Fig. 6.33 shown the specimen

ring of uniform cross-section wound
uniformly with a coil P which is con-
nected to a battery B through a revers-
ing switch RS, a variable resistance R1
and an ammeter.  Another secondary
coil S also wound over a small portion
of the ring and is connected through a
resistance R to a ballistic galvanometer
BG.

The current through the primary P
can be adjusted with the help of R1.  Sup-
pose the primary current is I.  When the
primary current is reversed by means of
RS, then flux is reversed through S,
hence an induced e.m.f. is produced in
it which sends a current through BG.
This current is of very short duration.
The first deflection or ‘throw’ of the BG
is proportional to the quantity of elec-
tricity or charge passing through it so
long as the time taken for this charge to
flow is short as compared with the time
of one oscillation.

If θ = first deflection or ‘throw’ of the galvanometer when primary current I is reversed.
k = ballistic constant of the galvanometer i.e. charge per unit deflection.

then, charge passing through BG is = kθ coulombs ...(i)
Let Φ = flux in Wb produced by primary current of I amperes ; t = time of reversal of flux ; then

rate of change of flux = 2
t
Φ Wb/s

Fig. 6.32
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Fig. 6.33

If N2 is the number of turns in secondary coil S, then average e.m.f. induces in it is

= N2 . 2
t
Φ volt.

Secondary current or current through BG = 22

s

N
R t

Φ
amperes

where Rs is the total resistance of the secondary circuit.

Charge flowing through BG = average current ×  time = 2 22 2

s s

N N
t

R t R
Φ Φ

× =  coulomb ...(ii)

Equation (i) and (ii), we get kθ  = 22

s

N
R

Φ
∴ Φ = 

22
sk R

N
θ

Wb

If A m2 is the cross-sectional area of the ring, then flux density is

B =
22

sk R
A N A

θΦ =  Wb/m2

If N1 is the number of primary turns and l metres the mean circumference of the ring, then,
magnetising force H = N1I/l AT/m.

The above experiment is repeated with different values of primary current and form the data so
obtained, the B/H curves or magnetisation curves can be drawn.

6.31.  Magnetisation Curves by Fluxmeter
In this method, the BG of Fig. 6.31 is replaced by a fluxmeter which is just a special type of

ballistic galvanometer.  When current through P is reversed, the flux is also reversed.  The deflection
of the fluxmeter is proportional to the change in flux-linkages of the secondary coil.  If the flux is
reversed from + Φ to − Φ, the change in flux-linkages in secondary S in = 2 Φ N2.

If θ = corresponding deflection of the fluxmeter
C = fluxmeter constant i.e. weber-turns per unit deflection.

then, change of flux-linkages in S = C θ

∴ 2Φ N2 = Cθ or Φ = 
2

C
N

θ Wb ;  B = 
22

C
A N A
Φ θ= Wb/m2

Example 6.8.  A fluxmeter is connected to a search-coil having 600 turns and mean area of
4 cm2.  The search coil is placed at the centre of an air-cored solenoid 1 metre long and wound with
1000 turns.  When a current of 4 A is reversed, there is a deflection of 20 scale divisions on the
fluxmeter.  Calculate the calibration in Wb-turns per scale division.

(Measurements-I, Nagpur Univ. 1991)
Solution.  Magnetising force of the solenoid is H = Nl/l AT/m
B = μ0 H = μ0 NI/l = 4π ×  10−7 ×  1000 ×  4/1 = 16π × 10−4 Wb/m2

Flux linked with the search coil is Φ = BA = 64π × 10−8 Wb
Total change of flux-linkages on reversal
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= 2 ×  64π ×  10−8 ×  600 Wb-turns –Art. 6.29
= 7.68π × 10−4 Wb-turns

Fluxmeter constant C is given by = Change in flux-linkages
deflection produced

= 7.68π × 10−4/20 = 1.206 ×××××  10−−−−−4 Wb-turns/division
Example 6.9.   A ballistic galvanometer, connected to a search coil for measuring flux density in

a core, gives a throw of 100 scale divisions on reversal of flux.  The galvanometer coil has a resis-
tance of 180 ohm.  The galvanometer constant is 100 μC per scale division.  The search coil has an
area of 50 cm2, wound with 1000 turns having a resistance of 20 ohm.  Calculate the flux density in
the core. (Elect. Instru & Measu. Nagpur Univ. 1992)

Solution.  As seen from Art. 6.28.
kθ = 2N2Φ/Rs or Φ = kθRs /2N2 Wb

∴ BA = kθRs /2N2   or B = kθRs /2N2A
Here k = 100 μC/division = 100 ×  10−6 = 10−4 C/division

θ = 100; A = 50 cm2 = 5 ×  10−3 m2

Rs = 180 + 20 = 200 Ω
∴ B = 10−4 ×  100 ×  200/2 ×  1000 ×  5 ×  10−3 = 0.2 Wb/m2

Example 6.10.  A ring sample of iron, fitted with a primary and a secondary winding is to be
tested by the method of reversals to obtain its B/H curve.  Give a diagram of connections explain
briefly how the test could be carried out.

In such a test, the primary winding of 400 turns carries a current of 1.8 A.  On reversal, a
change of 8 ×  10−3 Wb-turns is recorded in the secondary winding of 10 turns.  The ring is made up
of 50 laminations, each 0.5 mm thick with outer and inner diameters of 25 and 23 cm respectively.
Assuming uniform flux distribution, determine the values of B, H and the permeability.

Solution.  Here, change of flux-linkages = 2Φ N2 = 8 ×  10−3 Wb-turns
∴ 2Φ ×  10 = 8 ×  10−3 or Φ = 4 ×  10−4 Wb  and  A = 2.5 ×  10−4 m2

∴ B =
4

4
4 10

2.5 10

−

−
×
×

 = 1.6 Wb/m2 ; H = 
400 1.8

0.24
Nl
l

×=
π  = 955 AT/m

Now μ0 μr = B
H

; μr = 7
0

1.6
4 10 955

B
H −=

μ π × ×
 = 1333

Example 6.11.  An iron ring of 3.5 cm2 cross-sectional area with a mean length of 100 cm is
wound with a magnetising winding of 100 turns.  A secondary coil of 200 turns of wire is connected
to a ballistic galvanometer having a constant of 1 micro-coulomb per scale division, the total resis-
tance of the secondary circuit being 2000 Ω.  On reversing a current of 10 A in the magnetising coil,
the galvanometer gave a throw of 200 scale divisions.  Calculate the flux density in the specimen and
the value of the permeability at this flux density. (Elect. Measure, A.M.I.E Sec.B. 1992)

Solution.  Reference may please be made to Art. 6.28.
Here N1 = 100 ; N2 = 200 : A = 3.5 ×  10−4 m2 ; l = 100 cm = 1m

k = 10−6 C/division, θ  = 100 divisions; Rs = 2000 Ω; I = 10 A

B =
6

4
2

10 100 2000
2 2 200 3.5 10

sk R
N A

−

−
θ × ×=

× × ×
 = 1.43 Wb/m2

Magnetising force H = N1 I/l = 100 ×  10/1 = 1000 AT/m

μ = 1.43
1000

B
H

=  = 1.43 ×××××  10−−−−−3 H/m
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Note.  The relative permeability is given by μr = μ / μ0 = 1.43 ×  10−3/4π ×  10−7 = 1137.

Example 6.12.  An iron ring has a mean diameter of 0.1 m and a cross-section of 33.5 ×  10−6 m2.
It is wound with a magnetising winding of 320 turns and the secondary winding of 220 turns.  On
reversing a current of 10 A in the magnetising winding, a ballistic galvanometer gives a throw of 272
scale divisions, while a Hilbert Magnetic standard with 10 turns and a flux of 2.5 ×  10−4 gives a
reading of 102 scale divisions, other conditions remaining the same.  Find the relative permeability
of the specimen. (Elect. Measu. A.M.I.E. Sec B, 1991)

Solution.  Length of the magnetic path l = π D = 0.1 π m
Magnetising Force, H = NI/l = 320 ×  10/0.1 π = 10,186 AT/m
Flux density B = µ0 µr H = 4π ×  10−7 ×  µr ×  10,186 = 0.0128 µr ...(i)
Now, from Hilbert’s Magnetic standard, we have

2.5 ×  10−4 ×  10 = K ×  102, K = 2.45 ×  10−5

On reversing a current of 10 A in the magnetising winding, total change in Weber-turns is
2Φ Ns = 2.45 ×  10−5 ×  272  or  2 ×  220 ×  Φ = 2.45 ×  10−5 ×  272  or  Φ = 1.51 ×  10−5 Wb
∴ B = Φ/A = 1.51 ×  10−5/33.5 ×  10−6 = 0.45 Wb/m2

Substituting this value in Eq. (i), we have 0.0128 µr = 0.45,  ∴  µr = 35.1
Example 6.13.  A laminated soft iron ring of relative permeability 1000 has a mean circumfer-

ence of 800 mm and a cross-sectional area 500 mm2.  A radial air-gap of 1 mm width is cut in the
ring which is wound with 1000 turns.  Calculate the current required to produce an air-gap flux of
0.5 mWb if leakage factor is 1.2 and stacking factor 0.9.  Neglect fringing.

Solution. Total AT reqd. = Φg Sg + Φi Si = 
0 0

g g i i

g r i

l l
A A B

Φ Φ
+

μ μ μ

Now, air-gap flux Φs = 0.5 mWb = 0. 5 ×  10−3 Wb, lg = 1 mm = 1 ×  10−3 m; Ag = 500 mm2

= 500 ×  10−6 m2

Flux in the iron ring, Φi = 1.2 ×  0.5 ×  10−3 Wb
Net cross-sectional area = Ai ×  stacking factor =  500 ×  10−6 ×  0.9 m2

∴ total AT reqd. = 
3 3 3 3

7 6 7 6
0.5 10 1 10 1.2 0.5 10 800 10 1644

4 10 500 10 4 10 1000 (0.9 500 10 )

− − − −

− − − −
× × × × × × ×+ =

π × × × π × × × × ×
∴ I = 1644/1000 = 1.64 A
Example 6.14.  A ring has a diameter of 21 cm and a cross-sectional area of 10 cm2.  The ring

is made up of semicircular sections of cast iron and cast steel, with each joint having a reluctance
equal to an air-gap of 0.2 mm.  Find the ampere-turns required to produce a flux of 8 ×  10−4 Wb.  The
relative permeabilities of cast steel and cast iron are 800 and 166 respectively.
Neglect fringing and leakage effects.

(Elect. Circuits, South Gujarat Univ.)
Solution.  Φ = 8 ×  10−4 Wb ; A = 10 cm2 = 10−3 m2;

B = 8 ×  10−4/10−3 = 0.8 Wb/m2

Air gap
H = B/µ0 = 0.8/4π ×  10−7 = 6.366 ×  105 AT/m
Total air-gap length = 2 ×  0.2 = 0.4 mm

= 4 ×  10−4 m
∴ AT required = H ×  l = 6.366 ×  105 ×  4 ×  10−4 = 255

Cast Steel Path (Fig. 6.34) Fig. 6.34
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Fig. 6.35

H = B/µ0 µr = 0.8/4π ×  10−7 ×  800 = 796 AT/m
path = π D/2 = 21 π/2 = 33 cm = 0.33 m
AT required = H ×  l = 796 ×  0.33 = 263
Cast Iron Path
H = 0.8/π ×  10−7 ×  166 = 3,835 AT/m ; path = 0.33 m
AT required = 3,835 ×  0.33 = 1265

Total AT required = 255 + 263 + 1265 = 1783.
Example 6.15.  A mild steel ring of 30 cm mean circumference has a cross-sectional area of

6 cm2 and has a winding of 500 turns on it.  The ring is cut through at a point so as to provide an
air-gap of 1 mm in the magnetic circuit.  It is found that a current of 4 A in the winding, produces a
flux density of 1 T in the air-gap.  Find (i) the relative permeability of the mild steel and (ii) induc-
tance of the winding. (F.E. Engg. Pune Univ.)

Solution.  (a)  Steel ring
H = B/µ0 µr = 1/4π ×  10−7 ×  μr AT/m = 0.7957 ×  107/μr AT/m

m.m.f. = H ×  l = (0.7957  ×  107/μr) ×  29.9 ×  10−2 = 0.2379 ×  106/µr AT
(b) Air-gap

H = B/µ0 = 1/4π ×  10−7= 0.7957 ×  106 AT/m
m.m.f. reqd. = H ×  l = 0.7957  ×  106 ×  (1 ×  10−3) = 795.7 AT
Total m.m.f. = (0.2379 ×  106/μr) + 795.7

Total m.m.f. available = NI = 500 ×  4 = 2000 AT
(i) ∴ 2000 = (0.2379 ×  106/μr) + 795.7 ∴ μr = 197.5

(ii) Inductance of the winding = 
4500 1 6 10

4
N NBA

I I

−× × ×Φ = =  = 0.075 H

Example 6.16.  An iron ring has a X-section of 3 cm2 and a mean diameter of 25 cm.  An air-gap
of 0.4 mm has been cut across the section of the ring.  The ring is wound with a coil of 200 turns
through which a current of 2 A is passed.  If the total magnetic flux is 0.24 mWb, find the relative
permeability of iron, assuming no magnetic leakage. (Elect. Engg. A.M.Ae.S.I., June 1992)

Solution.  Φ = 0.24 mWb; A = 3 cm2 = 3 ×  10−4 m2;
B = Φ/A = 0.24 ×  10−3/3 ×  10−4 = 0.8 Wb/m2

AT for iron ring = H ×  l = (B/µ0 µr) ×  l = (0.8/4π ×  10−7 ×  µr) ×  0.25 = 1.59 ×  10−5/μr
AT for air-gap = H ×  l = (B/µ0) ×  l = (0.8/4π ×  10−7) ×  0.4 ×  10−3 = 255
Total AT reqd. = (1.59 ×  105/μr) + 255 ; total AT provided = 200 ×  2 = 400
∴ (1.59 ×  105/μr) + 255 = 400 or μr = 1096.
Example 6.17.  A rectangular iron core is shown in Fig. 6.35.  It has a mean length of magnetic

path of 100 cm, cross-section of (2 cm ×  2 cm), relative permeability of 1400 and an air-gap of
5 mm cut in the core.  The three coils carried by the core have number of turns Na = 335, Nb = 600
and Nc = 600 ; and the respective currents are 1.6 A, 4 A and 3 A.
The directions of the currents are as shown.  Find the flux in the
air-gap.                                                  (F.Y. Engg. Pune Univ. )

Solution.  By applying the Right-Hand Thumb rule, it is found
that fluxes produced by the current Ia and Ib are directed in the
clockwise direction through the iron core whereas that produced
by current Ic is directed in the anticlockwise direction through the
core.
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∴ total m.m.f. = Na Ia + Nb Ib − Nc Ic = 335 ×  1.6 + 600 ×  4 − 600 ×  3 = 1136 AT

Reluctance of the air-gap = 
3

7 4
0

5 10
4 10 4 10

I
A − −

×=
μ π × × ×

 = 9.946 ×  106 AT/Wb

Reluctance of the iron path = 
2

7 4
0

100 (0.5) 10
4 10 1400 4 10r

l
A

−

− −
− ×=

μ μ π × × × ×
 = 1.414 ×  106 AT/Wb

Total reluctance = (9.946 + 1.414) ×  106 = 11.36 ×  106 AT/Wb
The flux in the air-gap is the same as in the iron core.

Air-gap flux = 6
m.m.f. 1136

reluctance 11.36 10
=

×
 = 100 ×  10−6 Wb = 100 μμμμμWb

Example 6.18.  A series magnetic circuit comprises of three sections (i) length of 80 mm with
cross-sectional area 60 mm2, (ii) length of 70 mm with cross-sectional area 80 mm2 and (iii) and air-
gap of length 0.5 mm with cross-sectional area of 60 mm2.  Sections (i) and (ii) are if a material
having magnetic characteristics given by the following table.

H (AT/m) 100 210 340 500 800 1500
B (Tesla) 0.2 0.4 0.6 0.8 1.0 1.2
Determine the current necessary in a coil of 4000 turns wound on section (ii) to produce a flux

density of 0.7 Tesla in the air-gap.  Neglect magnetic leakage. (F.E. Pune Univ. May 1990)
Solution.  Section (i) It has the same cross-sectional area as the air-gap.  Hence, it has the same

flux density i.e. 0.7 Tsela as in the air-gap.  The value of the magnetising force H corresponding to
this flux density of 0.7 T as read from the B-H plot is 415 AT/m.

m.m.f. reqd = H ×  l = 415 ×  (80 ×  10−3) = 33.2 AT
Section (ii)  Since its cross-sectional area is different from that of the air-gap, its flux density

would also be different even though, being a series circuit, its flux would be the same.
Air-gap flux = B ×  L = 0 ×  (60 ×  10−6) = 42 ×  10−6 Wb
Flux density in this section = 42 ×  10−6/80 ×  10−6 = 0.525 T
The corresponding value of the H from the given garph is 285 AT/m
m.m.f. reqd, for this section = 285 ×  (70 ×  10−3) = 19.95 AT.
Air-gap
H = B/μ0 = 0.7/4π × 10−7 = 0.557 ×  106 AT/m
∴ m.m.f. reqd. = 0.557 ×  10−6 ×  (0.5 ×  10−3) = 278.5 AT
Total m.m.f. reqd. = 33.2 + 19.95 + 278.5 = 331.6
∴ NI = 331.6 or I = 331.6/4000 = 0.083 A
Example 6.19.  A magnetic circuit

made of mild steel is arranged as shown
in Fig. 6.36. The central limb is wound
with 500 turns and has a cross-sectional
area of 800 mm2.  Each of the outer limbs
has a cross-sectional area of 500 mm2.
The air-gap has a length of 1 mm.
Calculate the current rquired to set up a
flux of 1.3 mWb in the central limb
assuming no magnetic leakage and
fringing.  Mild steel required 3800 AT/m
to produce flux density of 1.625 T and 850
AT/m to produce flux density of 1.3 T.
                     (F.Y. Engg. Pune Univ. )

Fig. 6.36
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Fig. 6.37

Solution.  Flux in the central limb is = 1.3 mWb = 1.3 ×  10−3 Wb
Cross section A = 800 mm2 =800 ×  10−6 m2

∴ B = Φ/A = 1.3 ×  10−6 /800 ×  10−6

= 1.625 T
Corresponding value of H for this flux density is given as 3800 AT/m.
Since the length of the central limb is 120 mm. m.m.f. required is = H ×  l = 3800 ×  (120 ×  10−3)

= 456 AT/m.
Air-gap
Flux density in the air-gap is the same as that in the central limb.
H = B/μ0 = 1.625/4π ×  10−7 = 0.1293 ×  10−7 AT/m
Length of the air-gap = 1 mm = 10−3 m
m.m.f. reqd. for the air-gap = H ×  l = 0.1293 ×  107 ×  10−3 = 1293 AT.
The flux of the central limb divides equally at point A in figure along the two parallel path ABCD

and AFED.  We may consider either path, say ABCD and calculate the m.m.f. required for it.  The
same m.m.f. will also send the flux through the other parallel path AFED.

Flux through ABCD = 1.3 ×  10−3/2 = 0.65 ×  10−3 Wb
Flux density B = 0.65 ×  10−3/500 ×  10−6 = 1.3 T
The corresponding value of H for this value of B is given at 850 AT/m.
∴ m.m.f. reqd. for path ABCD = H ×  l = 850 ×  (300 ×  10−3) = 255 AT
As said above, this, m.m.f. will also send the flux in the parallel path AFED.
Total m.m.f. reqd. = 456 + 1293 + 255 = 2004 AT
Since the number of turns is 500, I = 2004/500 = 4A.
Example 6.20.  A cast steel d.c. electromagnet shown in Fig. 6.37 has a coil of 1000 turns on its

central limb.  Determine the current that the coil should carry to produce a flux of 2.5 mWb in the
air-gap.  Neglect leakage.  Dimensions are given in cm.  The magnetisation curve for cast steel is as
under :

Flux density (Wb/m2) : 0.2 0.5 0.7 1.0 1.2
Amp-turns/metre : 300 540 650 900 1150

(Electrotechnics-I, ; M.S. Univ. Baroda)
Solution.  Two points should be noted
(i) there are two (equal) parallel paths

ACDE and AGE across the central path AE.
(ii) flux density in either parallle path is

half of that in the central path because flux
divides into two equal parts at point A.

Total m.m.f. required for the whole
electromagnet is equal to the sum of the
following three m.m.fs.

(i) that required for path EF
(ii) that required for air-gap

(iii) that required for either of the two parallel paths ; say, path ACDE2
Flux density in the central limb and air gap is

= 2.5 ×  10−3/ (5 ×  5) ×  10−4 = 1 Wb/m2

Corresponding value of H as found from the given data is 900 AT/m.
∴ AT for central limb = 900 ×  0.3 = 270
H in air-gap = B/μ0 = 1/4π ×  10−7 = 79.56 ×  104 AT/m
AT required = 79.56 ×  104 ×  10−3 = 795.6
Flux density in path ACDE is 0.5 Wb/m2 for which corresponding value of H is 540 AT/m.
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∴ AT required for path ACDE = 540 ×  0.6 = 324
Total AT required = 270 + 795.6 + 324 = 1390 ;Current required = 1390/1000 = 1.39 A
Example 6.21.  A cast steel magnetic structure made for a bar of section 8 cm ×  2 cm is shown

in Fig. 6.35.  Determine the current that the 500 turn-magnetising coil on the left limb should carry
so that a flux of 2 mWb is produced in the right limb.  Take μr = 600 and neglect leakage.

(Elect. Technology Allahabad Univ. 1993)
Solution.  Since path C and D are in parallel with each other w.r.t. path E (Fig. 6.38), the m.m.f.

across the two is the same.
Φ1 S1 = Φ2 S2

∴ 1
15
A

Φ ×
μ = 252

A
×

μ
∴ Φ1 = 10/3 mWb
∴ Φ = Φ1 + Φ2 = 16/3 mWb
Total AT required for the whole circuit is equal to the

sum of
(i) that required for path E and (ii) that required for either of the two paths C or D.

Flux  density in path E =
3

4
16 10 40

33 4 10

−

−
× =

× ×
 Wb/m2

AT reqd. = 7
40 0.25 4, 420

3 4 10 600−
× =

× π × ×

Flux density in path D =
3

4
2 10 5
4 10

−

−
× =
×

 Wb/m2

AT reqd. = 7
5 0.25 1658

4 10 600− × =
π × ×

Total AT = 4,420 + 1,658 = 6,078 ;
Current needed = 6078/500 = 12.16 A

Example 6.22. A ring of cast steel has an external diameter of 24 cm and a square cross-section
of 3 cm side.  Inside and cross the ring, an ordinary steel bar 18 cm ×  3 cm ×  0.4 cm is fitted with
negligible gap.  Calculating the number of ampere-turns required to be applied to one half of the
ring to produce a flux density of 1.0 weber per metre2 in the other half.  Neglect leakge.  The B-H
characteristics are as below :

For Cast Steel For Ordinary Plate

B in Wb/m2 1.0 1.1 1.2 B in Wb/m2 1.2 1.4 1.45

Amp-turn/m 900 1020 1220 Amp-turn/m 590 1200 1650

(Elect. Technology, Indore Univ.)
Solution.  The magnetic circuit is shown in Fig. 6.39.
The m.m.f. (or AT) produced on the half A acts across the parallel magnetic circuit C and D.

First, total AT across C is calculated and since these amp-turns are also applied across D, the flux
density B in D can be estimated.  Next, flux density in A is calculated and therefore, the AT required
for this flux density. In fact, the total AT (or m.m.f.) required is the sum of that required for A and that
of either for the two parallel paths C or D.

Value of flux density in C = 1.0 Wb/m2

Mean diameter of the ring = (24 + 18)/2 = 21 cm

Fig. 6.38
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Mean circumference = π × 21 = 66 cm
Length of path A or C = 66/2 = 33 cm = 0.33 m
Value of AT/m for a flux density of 1.0
Wb/m2 as seen from the given B.H characteristics

= 900 AT/m
∴ Total AT for path C = 900 ×  0.33 = 297.  The same

ATs. are applied across path D.
Length of path D = 18 cm = 0.18 m ∴ AT/m for

path D = 297/0.18 = 1650
Value of B corresponding to this AT/m from given table

is = 1.45 Wb/m2

Flux through C = B ×  A = 1.0 ×  9 ×  10−4 = 9 ×  10−4 Wb
Flux through D = 1.45 ×  (3 ×  0.4 ×  10−4) = 1.74 ×  10−4 Wb
∴ Total flux through A = 9 ×  10−4 + 1.74 ×  10−4 = 10.74 ×  10−4 Wb.
Flux density through A = 10.74 ×  10−4/9 ×  10−4 = 1.193 Wb/m2

No. of AT/m reqd. to produce this flux density as read from the given table = 1200 (approx.)
∴ Amp-turns required for limb A = 1200 ×  0.33 = 396
Total AT required = 396 + 297 = 693
Example 6.23.  Show how the ampere-turns per pole required to produce a given flux in d.c.

generator are calculated.
Find the amp-turns per pole required to produce a flux of 40 mWb per pole in a machine with a

smooth core armature and having the following dimensions :
Length of air gap = 5 mm Area of air-gap = 500 cm2

Length of pole = 12 cm Sectional area of pole core = 325 cm2

Relative permeability of pole core = 1,500
Length of magnetic path in yoke betwen pole = 65 cm
Cross-sectional area of yoke = 450 cm2 ; Relative permeability of yoke = 1,200
Leakage coefficient = 1.2
The ampere-turns for the armature core may be neglected.
Solution.  Air-gap Φ = 40 mWb = 4 ×  10−2 Wb ; A = 500 ×  10−4 = 5 ×  10−3 m2

∴ B = 4 ×  10−2/5 ×  10−2 = 0.8 Wb/m2 ; H = B/μ0 = 0.8/4π ×  10−7 = 63.63 ×  10−4 AT/m
Air-gap length = 5 ×  10−3 m ; AT reqd. = 63.63 ×  104 ×  5 ×  10−3 = 3181.5
Pole Core

Φ = 1.2 ×  4 ×  10−2 = 4.8 ×  10−2 Wb ; A = 325 ×  10−4 m2

B = 4.8 ×  10−2/325 ×  10−4 = 1.477 Wb/m2

H = B/μ0 μr = 1.477/4π ×  10−7 ×  1,500 = 783 AT/m
Pole length = 0.12 m ; AT reqd. = 783 ×  0.12 = 94

Yoke Path
flux = half the pole flux = 0.5 ×  4 ×  10−2 = 2 ×  10−2 Wb

A = 450 cm2 = 45 ×  10−3 m2 ; B = 2 ×  10−2/45 ×  10−3 = 4/9 Wb/m2

H = 7
4 / 9 294.5

4 10 1,200− =
π × ×

 AT/m Yoke length = 0.65 m

At reqd = 294.5 ×  0.65, Total AT/pole = 3181.5 + 94 + 191.4 = 3,467

Fig. 6.39
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Example 6.24.  A shunt field coil is required to develop 1,500 AT with an applied voltage of
60 V.  The rectangular coil is having a mean length of turn of 50 cm.  Calculate the wire size.
Resistivity  of copper may be assumed to be 2 × 10–6  μΩ-cm at the operating temperature of the coil.
Estimate also the number of turns if the coil is to be worked at a current density of 3 A/mm2.

(Basis Elect. Machines Nagpur Univ. 1992)

Solution. NI = 1,500 (given) or 60. . 1,500VN N
R R

= =

∴ R = ohm
25
N Also R = 

62 10 50. Nl
A A

−× ×ρ =

∴ 25
N =

410 n
A

−
or A = 25 ×  10−4 cm2 or A = 0.25 mm2

∴
4
D2π = 0/25 or D = 0.568 mm

Current in the coil = 3 ×  0.25 = 0.75 A
Now, NI = 1,500 ; ∴ N = 1,500/0.75 = 2,000
Example 6.25.  A wooden ring has a circular cross-section of 300 sq. mm and a mean diameter

of the ring is 200 mm.  It is uniformly wound with 800 turns.
Calculate :
(i) the field strength produced in

the coil by a current of 2 amperes :(as-
sume = 1)

(ii) the magnetic flux density pro-
duced by this current and

(iii) the current required to produce
a flux density of 0.02 wb/m2.
[Nagpur University (Summer 2000)]

Solution.  The question assumes
that the flux-path is through the ring, as
shown by the dashed line, in figure, at
the mean diameter, in Fig. 6.40.

With a current of 2 amp,
Coil m.m.f. =  800 ×  2 = 1600 AT

Mean length of path = π × 0.2
= 0.628 m

(i) H = 1600
0.628  = 2548 amp-turns/meter

(ii) B = μ0 μr H = 4π ×  10−7 ×  1 ×  2548
= 3.20 ×  10−3 Wb/m2

This Flux density is produced by a coil current of 2-amp
(iii) For producing a flux of 0.02 Wb/m2, the coil current required is

 0.022
0.0032

× = 12.5 amp
Example 6.26.  A magnetic core in the form of a closed circular ring has a mean length of 30 cm

and a cross-sectional area of 1 cm2. The relative permeability of iron is 2400.  What direct-current
will be needed in the coil of 2000 turns uniformly wound around the ring to create a flux of 0.20 mWb
in iorn ? If an air-gap of 1 mm is cut through the core perpendicualr to the direction of this flux, what
current will now be needed to maintain the same flux in the air gap ?

[Nagpur University Nov. 1999]

Fig. 6.40
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Solution.

Reluctance of core = 7 4
0

30 101 1
10 10 2400 1 10r

L
a

2

− −
×= ×

μ μ π × × ×

=
930 10 995223

4 2400 1

−× =
π × ×

 MKS units

φ = 0.2 ×  10−3 Wb
MMF required = φ × Rel

= 0.2 ×  10−3 ×  995223 = 199 amp-tunrs
Direct current required through the 2000 turn coil

= 199 0.0995 amp
2000

=

Reluctance of 1 mm air gap

=
3 8

7 4
1 101 10 7961783

44 10 1 10

−

− −
×× = =

ππ × ×
 MKS units

Addition of two reluctances
= 995223 + 7961783 = 8957006 MKS units

MMF required to establish the given flux
= 0.2 ×  10−3 ×  8957006 = 1791 amp turns

Current required through the coil

= 1791
2000

 0.8955 amp

Note : Due to the high permeability of iron, which is given here as 2400, 1 mm of air-gap length is
equivalent magnetically to 2400 mm of length through the core, for comparison of mmf required.

Example 6.27.  An iron-ring of mean length 30 cm is made up of 3 pieces of cast-iron.  Each
piece has the same length, but their respective diameters are 4, 3 and 2.5 cm. An air-gap of length
0.5 mm is cut in the 2.5 – cm.  Piece.  If a coil of 1000 turns is wound on the ring, find the value of the
current has to carry to produce a flux density of 0.5 Wb/m2 in the air gap.  B-H curve data of cast-
iron is as follows :

B (Wb/m2) : 0.10 0.20 0.30 0.40 0.50 0.60
H (AT/m) : 280 680 990 1400 2000 2800
Permeability of free space = 4π × 10−7

Neglect Leakage and fringing effects. [Nagpur University, November 1998]
Solution.  From the data given, plot the B-H curve for cast-iron
The magnetic circuit has four parts connected in series
Part 1.  Air-gap 0.5 mm length, B = 0.5 wb/m2, and
Permeability of free sapce is known

H1 = B/μ0 = 0.5 ×  107/(4π) = 398100
AT for gap = (0.5 ×  10−3) ×  H1 = 199

Part 2.  2.5 cm diameter, 10 – cm long, cast-iron ring portion B and H are to be related with the
help of given data.  In this, out of 10 cms. 0.5 mm air-gap is cut, and this portion of ring will have cast-
iron length of 99.5 mm.

For B = 0.5 wb/m2, H2 = 2000 AT/m
AT2 = 2000 ×  9.95 ×  10−2 = 199
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Fig. 6.41

Part 3.  3-cm diameter, 10-cm long, cast-iron ring-portion.
Here B = 0.50 ×  (2.5/3)2 = 0.347 Wb/m2

For this B, H is read from B-H curve.
H3 = 1183 AT/m
AT3 = 1183 ×  10 ×  10−2 = 118.3
Part 4.  4 cm.  Diameter, 10 cm long, cast-iron ring portion.
Here, B = 0.50 ×  (2.5 ×  4)2 ×  0.195 Wb/m2

From, B–H curve, corresponding H is 661
AT4 = 661 ×  10 ×  10−2 = 66 AT
Since all these four parts in series, the total m.m.f. required is obtained by adding the above terms.
AT = 199 + 199 + 118 + 66 = 582
Coil Current = 582/1000 = 0.582 amp
Additional observations.
(a) The 2.5-cm diameter portion of the ring has H = 2000 for B = 0.5 Wb/m2.  From this, the

relative permeability of cast-iron can be foud out.
μ0 μr = 0.5/2000, giving μr = 199
An air-gap of 0.5 mm is equivalent of 99.5 mm of cast-iron length.  Hence, the two m.m.fs. are

equal to 199 each.
(b) The common flux for this circuit is obtained from flux-density and the concerned area.
Hence φ = 0.5 ×  (π/4) ×  (2.5 ×  10−2)2 = 0.02453 ×  10−2

= 0.2453 mWb
Reluctance of total magnetic circuit

=  m.m.f./flux = 582/(2.453 ×  10−4)
= 2372650 MKS units

Example 6.28.  A steel-ring of 25 cm mean diameter and of circular section 3 cm in diameter
has an air-gap of 1.5 mm length.  It is wound uniformly with 700 turns of wire carrying a current of
2 amp.  Calculate : (i) Magneto motive force (ii) Flux density (iii) Magnetic flux (iv) Relative perme-
ability.  Neglect magnetic leakage and assume that iron path takes 35 % of total magneto motive
force.                                          [Nagpur University, April 1996]
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Solution.  From the given data, length of mean path in the ring (= Lm) is to be calculated.  For a
mean diameter of 25 cm, with 1.5 mm of air-gap length.

Lm = (π × 0.25) − (1.5 ×  10−3) = 0.7835 m
Cross-sectional area of a 3 cm diameter ring = 7.065 ×  10−4 sq.m.
Total m.m.f. due to coil = 700 ×  2 = 1400 amp-turns
Since iron-path takes 355 of the total mmf, it is 490.
Remaining mmf of 910 is consumed by the air-gap.
Corresponding H for air-gap = 910/(1.5 ×  10−3) = 606666 amp-turns/m.
If Flux density is Bg, we have

Bg = μ0 Hg = 4π ×  10−7 ×  606666 = 0.762 Wb/m2

Iron-ring and air-gap are in series hence their flux is same.  Since the two have some cross-
sectional  area, the flux density is also same.  The ring has a mean length of 0.7835 m and needs an
mmf of 490.  For the ring.

H = 490/0.7845 = 625.4 amp-turns / m
μ0 μr = B/H = 0.752/625.4 = 1.218 ×  10−3

μr = (1.218 ×  10−3) / (4 π ×  10−7) = 970
Flux = Flux density ×  Cross-sectional area = 0.762 ×  7.065 ×  10−4 = 0.538 milli-webers

Check.  µr of 970 means that 1.5 mm of air-gap length is equivalent to (1.5 ×  10−3 ×  970) = 1.455
m of length through iron as a medium.  With this equivalent.

mmf of ring
mmf for (ring + air-gap)

= 0.785 0.35
0.785 1.455

=
+

which means that 35 % of total mmf is required for the ring
Example 6.29.  (a) Determine the amp-turns required to produce a flux of 0.38 mWb in an iron-

ring of mean diameter 58 cm and cross-sectional area of 3 sq. cm.  Use the following data for the
ring :

B Wb/m2 0.5 1.0 1.2 1.4
μr 2500 2000 1500 1000
(b) If a saw-cut of 1mm width is made in the ring, calculate the flux density in the ring, with the

mmf remaining same as in (a) above. [Nagpur University, Nov. 1996]
Solution.  Plot the B- μr curve as in Fig. 6.42

Fig. 6.42
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(a) Cross-sectional area = 3 sq. cm = 3 ×  10−4 sq. m.
Flux = 38 mWb = 0.38 ×  10−3 Wb
Flux density, B = flux/area = (0.38 ×  10−3)/(3 ×  10−4) = 1.267 Wb/m2

Looking into the table relating B and μr, interpolation is required for evaluating µr for B = 1.267
Wb/m2.  After 1.2 Wb/m2, μr decreases by 500 for a rise of 0.2 in B.  Interpolation results into :

μr = 0.0671500 500 1332
0.20

− × =

For mean diameter of path in the ring as 0.58 m, the length of the magnetic path in the ring is
lm = p ×  0.58 = 1.8212 m

Since B = μ0 μr H,
H = 1.267/(4π ×  10−7 ×  1332) = 757

Hence, the required m.m.f. is
757 ×  1.8212 = 1378 amp-turns

(b) If a saw-cut of 1 mm is cut in the ring, B is to be calculated with a m.m.f. of 1378.  Now the
magnetic circuit has two components in series : the ring with its B-μr curve in Fig. 6.42 and the air-
gap.  Since B is not known, µr cannot be accurately known right in the initial steps.  The procedure to
solve the case should be as follows :

Let B the flux density as a result of 1378 amp-turns due to the coil.
For air-gap. Hg = Bg / (4π ×  10−7) = 0.796 ×  106 AT/m

ATg = Hg ×  Ig = 0.796 ×  106 ×  1 ×  10−3 ×  Bg = 796 Bg
Due to the air-gap, the flux-density is expected to be between 0.5 and 1 Wb/m2, because, in (a)

above, μr (for B = 1.267 Wb/m2) is 1332.  One mm air-gap is equivalent to 1332 mm of path added
in iron-medium.  This proportional increase in the reluctance of the magnetic circuit indicates that
flux density should fall to a value in between 0.5 and 1 Wb/m2.

For Iron-ring.  With flux density expected to be as mentioned above, interpolation formula for
μr can be written as :

μr = 2500 − 500 [(Bg − 0.50) / 0.50] = 3000 − 1000 Bg
Hi = Bg / (μ0 μr) = Bg / [μ0 (3000 − 1000 Bg)]

Total m.m.f. = ATg + ATi = 1378, as previously calculated

Hence, 1378 =
0

1.8212
796

(3000 1000 )
g

g
g

B
B

B
×

+
μ −

This is a quadratic equation in Bg and the solution, which gives Bg in between 0.5 & 1.0 Wb/m2

is acceptable.
This results into Bg = 0.925 Wb/m2

Corresponding μr = 3000 − 1000 ×  0.925 = 2075
Example 6.30.  An iron-ring of mean diameter 19.1 cm and having a cross-sectional area of

4 sq. cm is required to produce a flux of 0.44 mWb.  Find the coil-mmf required.
If a saw-cut 1 mm wide is made in the ring, how many extra amp-turns are required to maintain

the same flux ?
B - μr curve is as follows :
B (Wb/m2) 0.8 1.0 1.2 1.4
μr 2300 2000 1600 1100

[Nagpur University, April 1998]
Solution.  For a mean-diameter of 19.1 cm, Length of mean path, lm = π ×  0.191 = 0.6 m
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Cross-sectional area = 4 sq.cm = 4 ×  10−4 m2

Flux, φ = 0.44 mWb = 0.44 ×  10−3 Wb
Flux density, B = 0.44 ×  10−3/(4 ×  10−4) = 1.1 Wb/m2

For this flux density, μr = 1800, by simple interpolation.
H = B/(μoμr) = 1.1 ×  107/(4π ×  1800) = 486.5 amp-turns/m.
m.m.f required = H ×  lm = 486.5 ×  0.60 = 292
A saw-cut of 1 mm, will need extra mmf.
Hg = Bg/μo = 1.1 ×  107/(4π) = 875796
ATg = Hg ×  lg = 875796 ×  1.0 ×  10−3 = 876
Thus, additional mmf required due to air-gap = 876 amp-turns
Example 6.31.  A 680-turn coil is wound on the central limb of a cast steel frame as shown in

Fig. 6.43 (a) with all dimensions in cms. A total flux of 1.6 mWb is required in the air-gap.  Find the
current in the magnetizing coil.  Assume uniform flux distribution and no leakage.  Data for B-H
curve for cast steel is given. [Nagpur University, Novemeber 1997]

Fig. 6.43 (a)

Fig. 6.43 (b) Fig. 6.43 (c)

Solution. φ = 1.6 mWb through air-gap and central limb
φ/2 = 0.8 mWb through yokes

Corresponding flux densities are :
Bg = Bc = 1.6 mWb/(16 ×  10−4) = 1.0 Wb/m2
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By = 0.8 m Wb/(16 ×  10−4) = 0.50 Wb/m2

MMF-Calculations :
(a) For Air gap : For Bg of 1 Wb/m2, Hg = 1.0/μo

ATg = Hg ×  lg = [1/(4π ×  10−7)] ×  (0.1 ×  10−2)
= 796 amp turns

(b) For Central limb : ATc = Hc ×  lc = 900 ×  0.24 = 216
∴ For Bc = 1.00, Hc from data = 900 AT/m
The yokes are working at a flux-density of 0.50 Wb/m2.  From the given data and the correspond-

ing plot, interpolation can be done for accuracy.
Hy = 500 + [(0.5 − 0.45)/(0.775 − 0.45)] ×  200

= 530 AT/m
Fy = 530 ×  0.68 = 360

Total mmf required = 796 + 216 + 360 = 1372
Hence, coil-current = 1372/680 = 2.018 A

Example 6.32.  For the magnetic circuit shown in fig. 6.44 the flux in the right limb is 0.24 mWb
and the number of turns wound on the central-limb is 1000.  Calculate (i) flux in the central limb
(ii) the current required.

The magnetization curve for the core is given as below :
H (AT/m) : 200 400 500 600 800 1060 1400
B (Nb/m2) : 0.4 0.8 1.0 1.1 1.2 1.3 1.4

Neglect Leakage and fringing. [Rajiv Gandhi Technical University, Bhopal, Summer 2001]

Fig. 6.44

Solution.  Area of cross-section of side-limbs = 2 ×  3 = 6 sq.cm
Area of cross-section of core = 3 ×  4 = 12 sq.cm
Flux in side Limbs = 0.24 mWb
Flux density in side Limbs = (0.24 ×  10−3)/(6 ×  10−4) = 0.4 Wb/m2

Since the coil is wound on the central limb and the magnetic circuit is symmetrical, the flux in the
central limb = 0.48 mWb.  Flux density in the central limb = (0.48 ×  10−3)/(12 ×  10−4) = 0.4 Wb/m2

For the flux density of 0.40 Wb/m2, H = 200 AT/m
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Central Limb has a path length of 15 cm.
Other part carrying 0.24 mWb has a total path length of 35 cm.
Total mmf required = (200 ×  0.15) + (200 ×  0.35) = 100 AT
Hence, coil current = 100/1000 = 0.1 Amp.
Example 6.33.  A ring composed of three sections.  The cross-sectional area is 0.001 m2 for

each section.  The mean arc length are la = 0.3 m, lb = 0.2 m, lc = 0.1 m.  An air-gap length of 0.1 mm
is cut in the ring.  Mr for sections a, b, c are 5000, 1000, and 10,000 respectively.  Flux in the air gap
is 7.5 ×  10−4 Wb.  Find (i) mmf  (ii)  exciting current if the coil has 100 turns, (iii)  reluctances of the
sections. [Nagpur University April 1999]

Solution.   Area = 0.001 sq.m
la = 0.3 m,  lb = 0.2 m,  lc = 0.1 m,  lg = 0.1 ×  10−3 m

μra = 5000,  μrb = 1000,  μrc = 10,000  μo = 4π ×  10−7

φ = 7.5 ×  10−4 Wb
(iii) Calculations of Reluctances of four parts of the magnetic circuit :

(a) Reluctance of air gap,  Reg =
30.1 101 1000

0.001 4 0.001o

−×× =
μ π ×

 = 79618

(b) Reluctance of section ‘a’ of ring

=  Rea =
710 0.31 0.3

0.001 4 47770 5000 0.001o ra

×× =
μ μ π × × ×

 = 47770

(c) Reluctance of section ‘b’ of the ring

=  Reb =
71 0.20 10 0.10

0.001 4 1000 0.001o rb
× = ×

μ μ π ×  = 15923.6

(d) Reluctance of section ‘c’ of the ring

=  Rec =
71 0.10 10 0.10

0.001 4 1000 0.001o rc
× = ×

μ μ π × = 7961

Total Reluctance = Reg + Rea + Reb + Rec = 294585
(i) Total mmf required =  Flux ×  Reluctance

= 7.5 ×  10−4 ×  294585 = 221 amp-turns
(ii) Current required = 221/100 = 2.21 amp

Tutorial Problems No. 62

1. An iron specimen in the form of a closed ring has a 350-turn magnetizing winding through which is
passed a current of 4A.  The mean length of the magnetic path is 75 cm and its cross-sectional area is
1.5 cm2.  Wound closely over the specimen is a secondary winding of 50 turns.  This is connected to
a ballistic glavanometer in series with the secondary coil of 9-mH mutual inductance and a limiting
resistor.  When the magnetising current is suddenly reversed, the galvanometer deflection is equal to
that produced by the reversal of a current of 1.2 A in the primary coil of the mutual inductance.
Calculate the B and H values for the iron under these conditions, deriving any formula used.

[1.44 Wb/m2 ; 1865 AT/m] (London Univ.)
2. A moving-coil ballistic galvanometer of 150 Ω gives a throw of 75 divisions when the flux through

a search coil, to which it is connected, is reversed.
Find the flux density in which the reversal of the coil takes place, given that the galvanometer con-
stant is 110 μC per scale division and the search coil has 1400 turns, a mean are of 50 cm2 and a
resistance of 20 Ω.         [0.1 Wb/m2]                  (Elect. Meas. & Measuring Inst. Gujarat Univ.)
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3. A fluxmeter is connected to a search coil having 500 turns and mean area of 5 cm2.  The search coil
is placed at the centre of a solenoid one metre long wound with 800 turns.  When a current of 5 A is
reversed, there is a deflection of 25 scale divisions on the fluxmeter.  Calculate the flux-meter constant.

[10−−−−−4 Wb-turn/division] (Elect. Meas. & Measuring Inst., M.S. Univ. Baroda)
4. An iron ring of mean length 50 cms has an air gap of 1 mm and a winding of 200 turns. If the

permeability of iron is 300 when a current of 1 A flows through the coil, find the flux density.
[94.2 mWb/m3] (Elect. Engg. A.M.Ae.S.I.)

5. An iron ring of mean length 100 cm with an air gap of 2 mm has a winding of 500 turns.  The relative
permeability of iron is 600.  When a current of 3 A flows in the winding, determine the flux density.
Neglect fringing.                        [0.523 Wb/m2] (Elect. Engg. & Electronic Bangalore Univ. 1990)

6. A coil is wound uniformly with 300 turns over a steel ring of relative permeability 900, having a
mean circumference of 40 mm and cross-sectional area of 50 mm2.  If a current of 25 amps is passed
through the coil, find (i) m.m.f. (ii)  reluctance of the ring and (iii) flux.
[(i) 7500 AT (ii) 0.7 ×××××  106 AT/Wb (iii) 10.7 mWb]

(Elect. Engg. & Electronics Bangalore Univ.)
7. A specimen ring of transformer stampings has a mean circumference of 40 cm and is wound with a

coil of 1,000 turns.  When the currents through the coil are 0.25 A, 1 A and 4 A the flux densities in
the stampings are 1.08, 1.36 and 1.64 Wb/m2 respectively.  Calcualte the relative permeability for
each current and explain the differences in the values obtained.                    [1,375,434,131]

8. A magnetic circuit consists of an iron ring of mean circumference 80 cm with cross-sectional area 12
cm2 throughout.  A current of 2A in the magnetising coil of 200 turns produces a total flux of 1.2
mWb in the iron.  Calculate :
(a) the flux density in the iron
(b) the absolute and relative permeabilities of iron
(c) the reluctance of the circuit

[1 Wb/m2 ; 0.002, 1,590 ; 3.33 ×××××  105 AT/Wb]
9. A coil of 500 turns and resistance 20 Ω is wound uniformly on an iron ring of mean circumference 50

cm and cross-sectional area 4 cm2.  It is connected to a 24-V d.c. supply.  Under these conditions, the
relative permeability of iron is 800.  Calculate the values of :
(a)  the magnetomotive force of the coil (b) the magnetizing force
(c) the total flux in the iron (d) the reluctance of the ring

[(a) 600 AT (b) 1,200 AT/m (c) 0.483 mWb (d) 1.24 ×××××  106 AT/Wb]
10. A series magnetic circuit has an iron path of length 50 cm and an air-gap of length 1 mm.  The cross-

sectional area of the iron is 6 cm2 and the exciting coil has 400 turns.  Determine the current required
to produce a flux of 0.9 mWb in the circuit.  The following points are taken from the magnetisation
characteristic :
Flux density (Wb/m2) : 1.2 1.35 1.45 1.55
Magnetizing force (AT/m) : 500 1,000 2,000 4,500 [6.35 A]

11. An iron-ring of mean length 30 cm is made of three pieces of cast iron, each has the same length but
their respective diameters are 4, 3 and 2.5 cm.  An air-gap of length 0.5 mm is cut in the 2.5 cm piece.
If a coil of 1,000 turns is wound on the ring, find the value of the current it has to carry to produce a
flux density of 0.5 Wb/m2 in the air gap.  B/H characteristic of cast-iron may be drawn from the
following :
B (Wb/m2) : 0.1 0.2 0.3 0.4 0.5 0.6
(AT/m) : 280 620 990 1,400 2,000 2,8000 [0.58 A]
Permeability of free space = 4π ×  107 H/m.  Neglect leakage and fringing.

12. The length of the magnetic circuit of a relay is 25 cm and the cross-sectional area is 6.25 cm2.  The
length of the air-gap in the operated position of the relay is 0.2 mm. Calculate the magnetomotive
force required to produce a flux of 1.25 mWb in the air gap. The relative permeability of magnetic
material at this flux density is 200. Calculate also the reluctance of the magnetic circuit when the
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relay is in the unoperated position, the air-gap then being 8 mm long (assume µr, remains constant).
[2307 AT, 1.18 ×××××  107 AT/Wb]

13. For the magnetic circuit
shown in Fig. 6.45, all di-
mensions are in cm and all
the air-gaps are 0.5 mm wide.
Net thickness of the core is
3.75 cm throughout.  The
turns are arranged on the cen-
tre limb as shown.
Calculate the m.m.f. required
to produce a flux of 1.7 mWb
in the centre limb.  Neglect
the leakage and fringing.  The
magnetisation data for the material is as follows :
H (AT/m) : 400 440 500 600 800
B (Wb/m2) : 0.8 0.9 1.0 1.1 1.2 [1,052 AT]

14. In the magnetic circuit shown in Fig. 6.46 a coil of 500 turns is wound on the centre limb.  The
magnetic paths A to B by way of the outer limbs have a mean length of 100 cm each and an effective
cross-sectional area of 2.5 cm2.  The centre limb is 25 cm long and 5cm2 cross-sectional area.  The
air-gap is 0.8 cm long.  A current of 9.2 A through the coil is found to produce a flux of 0.3 mWb.

15. The magnetic circuit of a choke is shown in Fig. 6.47.  It is designed so that the flux in the central
core is 0.003 Wb.  The cross-section is square and a coil of 500 turns is wound on the central core.
Calculate the exciting current.  Neglect leakage and assume the flux to be uniformly distributed along
the mean path shown dotted.  Dimensions are in cm.
The characteristics of magnetic circuit are as given below :
B (Wb/m2) : 0.38 0.67 1.07 1.2 1.26
H (AT/m) : 100 200 600 1000 1400

(Elect. Technology I. Gwalior Univ.)
16. A 680-turn coil is wound on the central limb of the cast steel sheet frame as shown in Fig. 6.48 where

dimensions are in cm.  A total flux of 1.6 mWb is required to be in the gap.  Find the current required
in the magnetising coil.  Assume gap density is uniform and all lines pass straight across the gap.
Following data is given :
H (AT/m) : 300 500 700 900 1100
B (Wb/m2) : 0.2 0.45 0.775 1.0 1.13

(Elect. Technology ; Indore Univ.)

           Fig. 6.45                       Fig. 6.46

Fig. 6.47 Fig. 6.48

17. In the magnetic circuit of Fig. 6.49, the core is composed of annealed sheet steel for which a stacking
factor of 0.9 should be assumed. The core is 5 cm thick.  When ΦA = 0.002 Wb, ΦB = 0.0008 Wb and
ΦC = 0.0012 Wb.  How many amperes much each coil carry and in what direction ? Use of the
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following magnetisation curves can be made for solving the problem.
B (Wb/m2) : 0.2 0.4 0.6 0.8 1.0 1.4 1.6 1.8
H (AT/m2) : 50 100 130 200 320 1200 3800 10,000

(Elect. Technology, Vikram Univ.)

18. A magnetic circuit with a uniform cross-sectional area of 6 cm2 consists of a steel ring with a mean
magnetic length of 80 cm and an air gap of 2 mm.  The magnetising winding has 540 ampere-turns.
Estimate the magnetic flux produced in the gap.  The relevant points on the magnetization curve of
cast steel are :
B (Wb/m2) : 0.12 0.14 0.16 0.18 0.20
H (AT/m) : 200 230 260 290 320

[0.1128 m Wb] (City & Guilds, London)
19. Explain the terms related to magnetic circuits :

(i) reluctance  (ii) flux density  (iii) magnetomotive force (Nagpur University, Summer 2002)
20. A metal ring of mean diameter of 80 cm is made out of two semi-circular pieces of cast iron and

cast steel separated at junctions by pieces of copper each of 1 mm thickness. If the ring is uniformly
wound with 1000 turns, calculate the value of current required to produce a flux density of 0.85
wb/nV in the ring.
Given that relative permeability of cast iron as 200, that of cast steel is 1200 and for copper,
µr = 1.    (Nagpur University, Summer 2002)

21. A 1154 turns coil is wound on the central limb of the case steel frame shown in Fig. 6.50. A total
flux of 1.6 mwb is required in the air gap. Find the current required through the gap. Assume that
the gap density is uniform and there is no leakage. Frame dimensions are given in cm. Take
permeability of cast steel as 1,200.      (Nagpur University, Winter 2002)

Fig. 6.50

22. Explain the terms related to magnetic circuits :
(i) Reluctance   (ii) Flux density   (iii) Coercive force  (iv) Magnetomotive force  (v) Residual flux.

(Nagpur University, Summer 2003)
23. Compare electric and magnetic circuit by their similarities and dissimilarities.

(Nagpur University, Winter 2003)
24. Compare electric and magnetic circuits with respect to their similarities and dissimilarities.

(Nagpur University, Summer 2004)

Fig. 6.49
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25. A steel wire of 25 cm mean diameter and circular cross section 3 cm in diameter has an airgap of
1 mm wide. It is wound with a coil of 700 turns carrying a current of 2 A.
Calculate :  (i) m.m.f.  (ii) Flux density  (iii) Reluctance  (iv) Relative permeability.
Assume that iron path take 30% of total m.m.f. (Gujrat University,Summer 2003)

26. What is a search coil in magnetic measurements? (Anna University, April 2002)
27. Name the magnestic squares used to find iron loss. (Anna University, April 2002)
28. What is a magnetic circuit? A magnetic circuit is made up of 3 limbs A, B and C in prallel. The

reluctances  of the magnetic paths of A, B and C in AT/mWb are 312, 632.6 and 520 respectively.
An exciting coil of 680 turns is wound on limb B. Find the exciting current to produce of flux of
lmwb in the limb A.                   (V.T.U., Belgaum Karnataka University, February 2002)

29. An iron ring of 300cm mean circumference with a cross section of 5cm2 is wound uniformly with
350 turns of wire. Find the current required to produce a flux of 0.5 Mwb in iron. Take relative
permeability of iron as 400. (V.T.U. Belgaum Karnataka University, July/August 2002)

30. What is Biot-Savart law? Explain briefly. Find the magnetic field due to a small circular loop carrying
current I at distances from loop that are large compared with its dimensions.

(Agra Univ. 1978 Supp.)
31. Magnetic potential (Mumbai University, 2002) (RGPV, Bhopal 2001)
32. Flux density (Pune University,2002) (RGPV, Bhopal 2001)
33. Susceptibility (Mumbai University, 2002) (RGPV, Bhopal 2001)
34. Define mm f, flux, reluctance, absolute and relative permeabilities with reference to magnetic circuits.

( U.P. Technical University 2003) (RGPV, Bhopal 2002)
35. Discuss B-H curve of a ferro-magnetic material and explain the following.

(i) Magnetic saturation  (ii) Hysteresis  (iii) Residual magnetism  (iv) Coercive force
(RGPV, Bhopal 2002)

36. What is meant by leakage and fringing? Define leakage coefficient.
(RGPV, Bhopal 2002)

37. Define the following terms (any five) :
(i) MMF  (ii ) Reluctance  (iii) Permeance  (iv) Magnetisation curve  (v) flux density
(vi) Magnetizing force  (vii) Susceptibility  (viii) Relative permeability (ix) Magnetic potential

 (RGPV, Bhopal 2002)
38. Distinguish between leakage and fringing of flux.                  (RGPV, Bhopal 2002)
39. Explain fringing of magnetic flux, magnetic leakage, staturation of ferowegnetic materials, B-H

Curve, hysteresis and eddy current losses.                  (RGPV, Bhopal  2003)

OBJECTIVE TESTS – 6

1. Relative permeability of vacuum is
(a) 4π ×  10−7 H/m (b) 1 H/m
(c) 1 (d) 1/4 π

2. Unit of magnetic flux is
(a) weber (b) ampere-turn
(c) tesla (d) coulomb

3. Point out the WRONG statement.
The magnetising force at the centre of a
circular coil varies.
(a) directly as the number of its turns
(b) directly as the current

(c) directly as its radius
(d) inversely as its radius

4. A pole of driving point admittance function
implies
(a) zero current for a finite value of driving

voltage
(b) zero voltage for a finite value of driving

current
(c) an open circuit condition
(d) None of (a), (b) and (c) mentioned in

the question (ESE 2001)

ANSWERS
1. c 2. a 3. a
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