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5.1. Capacitor

A capacitor essentially consists of two conducting surfaces separated
by a layer of an insulating medium called dielectric.  The conducting sur-
faces may be in the form of either circular (or rectangular) plates or be of
spherical or cylindrical shape.  The purpose of a capacitor is to store elec-
trical energy by electrostatic stress in the dielectric (the word ‘condenser’
is a misnomer since a capacitor does not ‘condense’ electricity as such, it
merely stores it).

A parallel-plate capacitor is shown in Fig. 5.1.  One plate is joined to
the positive end of the supply and the other to the negative end or is earthed.
It is experimentally found that in the presence of an earthed plate B, plate
A is capable of withholding more charge than when B is not there.  When
such a capacitor is put across a battery, there is a momentary flow of
electrons from A to B.  As negatively-charged electrons are withdrawn
from A, it becomes positive and as these electrons collect on B, it becomes
negative.  Hence, a p.d. is established between plates A and B.  The transient
flow of electrons gives rise to charging current.  The strength of the charging
current is maximum when the two plates are uncharged but it then decreases and finally ceases when
p.d. across the plates becomes slowly and slowly equal and opposite to the battery e.m.f.

5.2. Capacitance
The property of a capacitor to ‘store electricity’ may be called

its capacitance.
As we may measure the capacity of a tank, not by the total

mass or volume of water it can hold, but by the mass in kg of
water required to raise its level by one metre, similarly, the
capacitance of a capacitor is defined as “the amount of charge
required to create a unit p.d. between its plates.”

Suppose we give Q coulomb of charge to one of the two plate
of capacitor and if a p.d. of V volts is established between the two,
then its capacitance is

                    C = charge
potential differnce

Q
V

=

Hence, capacitance is the charge required per unit potential difference.
By definition, the unit of capacitance is coulomb/volt which is also called farad (in honour of

Michael Faraday)
∴ 1 farad = 1 coulomb/volt
One farad is defined as the capacitance of a capacitor which requires a charge of one coulomb

to establish a p.d. of one volt between its plates.
One farad is actually too large for practical purposes.  Hence, much smaller units like microfarad

(μF), nanofarad (nF) and micro-microfarad (μμF) or picofarad (pF) are generally employed.
1 μF = 10−9 F; 1 nF = 10−9 F ; 1 μμF or pF = 10−12F

Incidentally, capacitance is that property of a capacitor which delays and change of voltage
across it.

5.3. Capacitance of an Isolated Sphere

Consider a  charged sphere of radius r metres having a charge of Q coulomb placed in a medium

Fig. 5.1

A capacitor stores electricity
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of relative permittivity εr as shown in Fig. 5.2.
It has been proved in Art 4.13 that the free surface potential V

of such a sphere with respect to infinity (in practice, earth) is given by

V =
04 r

Q
rπ ε ε ∴ Q

V
 = 4 π ε0 ε r r

By definition, Q/V = capacitance C
∴ = 4 π ε0 ε r r F – in a medium

= 4 π ε0 r F – in air

Note :  It is sometimes felt surprising that an isolated sphere can act as a capacitor because, at first sight, it
appears to have one plate only.  The question arises as to which is the second surface.  But if we remember that
the surface potential V is with reference to infinity (actually earth) then it is obvious that the other surface is
earth.  The capacitance 4 π ε0 r exists between the surface of the sphere and earth.

5.4. Spherical Capacitor

(a) When outer sphere is earthed
Consider a spherical capacitor consisting of two concentric spheres of radii ‘a’ and ‘b’ metres as

shown in Fig. 5.3.  Suppose, the inner sphere is given a charge of + Q
coulombs.  It will induce a charge of − Q coulombs on the inner surfaces
which will go to earth.  If the dielectric medium between the two spheres
has a relative permittivity of εr, then the free surface potential of the inner
sphere due to its own charge Q/4 π ε0 ε r a volts.  The potential of the
inner sphere due to − Q charge on the outer sphere is − Q/4 π ε0 ε r b
(remembering that potential anywhere inside a sphere is the same as that
its surface).
∴ Total potential difference between two surfaces is

V =
0 04 4r r

Q Q
a b

−
π ε ε π ε ε

= ( )
0 0

1 1
4 4r r

b aQ Q
a b ab

−⎛ ⎞− = ⎜ ⎟π ε ε π ε ε ⎝ ⎠
Q
V

= 04 r ab
b a

π ε ε
−

∴ C = 4 π ε0 εr 
ab

b a−
 F

(b) When inner sphere is earthed
Such a capacitor is shown in Fig. 5.4.  If a charge of + Q coulombs is given to the outer sphere A,

it will distribute itself over both its inner and outer surfaces.  Some charge Q2 coulomb will remain on
the outer surface of A because it is surrounded by earth all around.  Also, some charge
+ Q1 coulombs will shift to its inner side because there is an earthed sphere B inside A.

Obviously, Q = Q1 + Q2
The inner charge + Q1 coulomb on A induces − Q1 coulomb on B but the other induced charge of

+ Q1 coulomb goes to earth.
Now, there are two capacitors connected in parallel :
(i) One capacitor consists of the inner surface of A and the outer surface of B.  Its capacitance,

as found earlier, is

C1 = 4 π ε0 εr 
a b

b a−
(ii) The second capacitor consists of outer surfaces of B and earth.  Its capacitance is C2 = 4 π ε0

b − if surrounding medium is air.  Total capacitance C = C1 + C2.

Fig. 5.2

Fig. 5.3

Fig. 5.4
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5.5. Parallel-plate Capacitor

(i) Uniform Dielectric-Medium
A parallel-plate capacitor consisting of two plates M and

N each of area A m2 separated by a thickness d metres of a
medium of relative permittivity εr
is shown in Fig. 5.5.  If a charge
of + Q coulomb is given to plate
M, then flux passing through the
medium is ψ = Q coulomb. Flux
density in the medium is

           D = Q
A A
ψ =

Electric intensity E = V/d and
  D = ε  E

or Q
A

= V
d

ε ∴ AQ
V d

ε=

∴                              C = 0 r A
d

ε ε
 farad                 – in a medium ...(i)

= 0 A
d

ε
 farad                 – with air as medium

(ii) Medium Partly Air
As shown in Fig. 5.6, the medium consists partly of air and partly

of parallel-sided dielectric slab of thickness t and relative permittivity
εr.  The electric flux density D = Q/A is the same in both media.  But
electric intensities are different.

E1 =
0 r

D
ε ε

... in the medium

E2 =
0

D
ε

... in air

p.d. between plates, V = E1 . t + E2 (d − t)

=
0 0 0

( )
r r

D D D tt d t d t⎛ ⎞+ − = + −⎜ ⎟ε ε ε ε ε⎝ ⎠

=
0

[ ( / )]r
Q d t t

A
− − ε

ε

or Q
V

= 0
[ ( / )]r

A
d t t

ε
− − ε

or C = 0
[ ( / )]r

A
d t t

ε
− − ε

...(ii)

If the medium were totally air, then capacitance would have been
C = ε0 A/d

From (ii) and (iii), it is obvious that when a dielectric slab of thickness t and relative permittivity
εr is introduced between the plates of an air capacitor, then its capacitance increases because as seen
from (ii), the denominator decreases.  The distance between the plates is effectively reduces by
(t − t/εr).  To bring the capacitance back to its original value, the capacitor plates will have to be
further separated by that much distance in air.  Hence, the new separation between the two plates
would be = [d + (t − t / εr)]

The expression given in (i) above can be written as C = 0
/ r

A
d
ε

ε

Fig. 5.5

Fig. 5.6

The figure shows how the
capacitance changes when

dielectric constant is changed

Vacuum Dielectric

Electrometer
(a)

Electrometer
(b)

V
0 ← ←V← ←

Q – Q Q
– Q
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If the space between the plates is filled with slabs of different thickness and relative permittivities,

then the above expression can be generalized into C = 0
/ r

A
d
ε

Σ ε
The capacitance of the capacitor shown in Fig. 5.7 can be written as

C = 0

31 2

1 2 3r r r

A
dd d

ε
⎛ ⎞+ +⎜ ⎟ε ε ε⎝ ⎠

(iii) Composite Medium
The above expression may be derived independently as given under :
If V is the total potential difference across the capacitor plates and V1, V2, V3, the potential

differences across the three dielectric slabs, then
V = V1 + V2 + V3 = E1t1 + E2t2 + E3t3

= 1 2 3
0 1 0 2 0 3

. . .
r r r

D D Dt t t+ +
ε ε ε ε ε ε

= 3 31 2 1 2

0 1 2 3 0 1 2 3r r r r r r

t tt t t tQD
A

⎛ ⎞ ⎛ ⎞+ + = + +⎜ ⎟ ⎜ ⎟ε ε ε ε ε ε ε ε⎝ ⎠ ⎝ ⎠

∴ C = 0

31 2

1 2 3r r r

AQ
V tt t

ε
=

⎛ ⎞+ +⎜ ⎟ε ε ε⎝ ⎠

5.6. Special Cases of Parallel-plate Capacitor
Consider the cases illustrated in Fig. 5.8.
(i) As shown in Fig. 5.8 (a), the dielectric is of

thickness d but occupies only a part of the area.  This
arrangement is equal to two capacitors in parallel.  Their
capacitances are

C1 = 0 1A
d

ε
and C2 = 0 2r A

d
ε ε

Total capacitance of the parallel-plate capacitor is

C = C1 + C2 = 0 1 0 2rA A
d d

ε ε ε
+

(ii) The arrangement shown in Fig. 5.8 (b) con-
sists of two capacitors connected in parallel.

(a) one capacitor having plate area A1 and air as dielectric.  Its capacitance is C1 = 0 1A
d

ε

(b) the other capacitor has dielectric partly air and partly some other medium.  Its capacitance is
[Art 5.5 (ii)].  C2 = 0 2

[ ( / )r

A
d t t

ε
− − ε

.  Total capacitance is C = C1 + C2

5.7. Multiple and Variable Capacitors
Multiple capacitors are shown in Fig. 5.9 and Fig. 5.10.
The arrangement of Fig. 5.9. is equivalent to two capacitors joined in parallel.  Hence, its

capacitance is double that of a single capacitor.  Similarly, the arrangement of Fig. 5.10 has four times
the capacitance of single capacitor.

Fig. 5.7

Fig. 5.8

(a) (b)
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If one set of plates is fixed and the other is capable of rotation, then
capacitance of such a multiplate capacitor can be varied.  Such variable-
capacitance air capacitors are widely used in radio work (Fig. 5.11).  The
set of fixed plates F is insulated from the other set R which can be rotated
by turning the knob K.  The common area between the two sets is varied
by rotating K, hence the capacitance between the two is altered.  Minimum
capacitance is obtained when R is completely rotated out of F and maximum
when R is completely rotated in i.e. when the two sets of plates completely
overlap each other.

The capacitance of such a capacitor is

= 0( 1) . rn A
d

− ε ε

where n is the number of plates which means that (n − 1) is the number of
capacitors.

Example 5.1.  The voltage applied across a capacitor having a
capacitance of 10 μ F is varied thus :

The p.d. is increased uniformly from 0 to 600 V in seconds.  It
is then maintained constant at 600 V for 1 second and subse-
quently decreased uniformly to zero in five seconds.  Plot a
graph showing the variation of current during these 8 sec-
onds.  Calculate (a) the charge (b) the energy stored in the
capacitor when the terminal voltage is 600.

(Principles of Elect. Engg.-I, Jadavpur Univ.)
Solution.  The variation of voltage across the capacitor is as
shown in Fig. 5.12 (a).
The charging current is given by

i = ( ) .dq d dvCv C
dt dt dt

= =

Charging current during the first stage
= 10 ×  10−6 ×  (600/2) = 3 ×  10−3 A = 3 mA

Charging current during the second stage is zero because
dv/dt = 0 as the voltage remains constant.
Charging current through the third stage

= 10 ×  10−6 ×  
0 600

5
−⎛ ⎞

⎜ ⎟⎝ ⎠
 = − 1.2 ×  10−3 A = − 1.2 mA

The waveform of the charging current or capacitor current is shown in Fig. 5.12 (b).
(a)  Charge when a steady voltage of 600 V is applied is  =  600 ×  10 ×  10−6 = 6 ×××××  10−−−−−3 C
(b) Energy stored = 1

2  C V 2 = 1
2  ×  10−5 ×  6002 = 1.8 J

Example 5.2.  A voltage of V is applied to the inner sphere of a spherical capacitor, whereas the
outer sphere is earthed.  The inner sphere has a radius of a and  the outer one of  b. If b is fixed and a may
be varied, prove that the maximum stress in the dielectric cannot be reduced below a value of 4 V/b.

Fig. 5.11

Fig. 5.12

Fig. 5.9 Fig. 5.10

(a) (b)
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Solution.  As seen from Art. 5.4,

V = ( )
0

1 1
4 r

Q
a b

−
π ε ε ...(i)

As per Art. 4.15, the value of electric intensity at any radius x between the two spheres is given
by E = 2

04 r

Q
xπ ε ε

 or Q =  4 π ε0 εr x
2 E

Substituting this value in (i) above, we get

V = ( )2
0

0

4 1 1
4

r

r

x E
a b

π ε ε
−

π ε ε
or E = 2(1/ 1/ )

V
a b x−

As per Art. 5.9, the maximum value of E occurs as the surface of inner sphere i.e. when x = a
For E to be maximum or minimum, dE/da = 0.
∴ ( )1 1d

da a b
−  a2 = 0 or d

da
 (a − a2/b) = 0

or 1 − 2 a/b = 0 or a = b/2

Now, E = 2(1/ 1/ )
V

a b x−
∴Emax = 2(1/ 1/ )

V
a b a−

 = 2( / )
V

a a b−

Since, a = b/2 ∴  Emax = 2( / 2 / 4 )
V

b b b−
 = 2 2

4
2

bV
b b−

 = 2
4bV
b

 = 4V
b

Example 5.3.  A capacitor consists of two similar square aluminium plates, each 10 cm ×  10 cm
mounted parallel and opposite to each other.  What is their capacitance in μμ F when distance
between them is 1 cm and the dielectric is air ?  If the capacitor is given a charge of 500 μμ C, what
will be the difference of potential between plates ? How will this be affected if the space between the
plates is filled with wax which has a relative permittivity of 4 ?

Solution. C = ε0 A/d farad
Here ε0 = 8.854 ×  10−12 F/m ;  A = 10 ×  10 = 100 cm2 = 10−2 m2

d =  1 cm = 10−2 m

∴ C =
12 2

2
8.854 10 10

10

− −

−
× ×  = 8.854 ×  10−12 F = 8.854 μμμμμμμμμμF

Now C = Q
V

∴ V = Q
C or V = 

12

12
500 10 C

F8.854 10

−

−
×
×

 = 56.5 volts.

When wax is introduced, their capacitance is increased four times because
C = ε0 εr A/d F = 4 ×  8.854 = 35.4 μμ F

The p.d. will obviously decrease to one fourth value because charge remains constant.
∴ V = 56.5/4 = 14.1 volts.
Example 5.4.  The capacitance of a capacitor formed by two parallel metal plates each

200 cm2 in area separated by a dielectric 4 mm thick is 0.0004 microfarads.  A p.d. of 20,000 V is
applied.  Calculate (a) the total charge on the plates (b) the potential gradient in V/m (c) relative
permittivity of the dielectric (d) the electric flux density. (Elect. Engg. I Osmaina Univ.)

Solution. C = 4 ×  10−4 μF ; V = 2 ×  104 V
(a) ∴ Total charge Q = CV = 4 ×  10−4 ×  2 ×  104 μC = 8 μC =  8 ×××××  10−−−−−6 C

(b) Potential gradient =
4

3
2 10
4 10

dV
dx −

×=
×

 = 5 ×××××  106 V/m

(c) D = Q/A = 8 ×  10−6/200 ×  10−4 = 4 ×××××  10−−−−−4 C/m2

(d) E = 5 ×  106 V/m

Since D = ε0 ε r E ∴ εr =
4

12 6
0

4 10
8.854 10 5 10

D
E

−

−
×=

ε × × × ×
 = 9
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Example 5.5.  A parallel plate capacitor has 3 dielectrics with relative permittivities of 5.5, 2.2
and 1.5 respectively.  The area of each plate is 100 cm2 and thickness of each dielectric 1 mm.
Calculate the stored charge in the capacitor when a potential difference of  5,000 V is applied across
the composite capacitor so formed.  Calculate the potential gradient developed in each dielectric of
the capacitor. (Elect. Engg. A.M.Ae.S.I.)

Solution.  As seen from Art. 5.5,

C =
12 4 14

0
33 3 3

31 2

1 2 3

8.854 10 (100 10 ) 8.854 10
10 0.30310 10 10

5.5 2.2 1.5r r r

A
dd d

− − −

−− − −

ε × × × ×= =
⎛ ⎞ ⎛ ⎞ ×+ + + +⎜ ⎟ ⎜ ⎟ε ε ε⎝ ⎠ ⎝ ⎠

 = 292 pF

Q = CV =292 ×  10−12 ×  5000 = 146 ×  10−8 coulomb
D = Q/A = 146 ×  10−8/(100 ×  10−4) = 146 ×  10−6 C/m2

g1 = E1 = D/ε0 εr1 = 146 ×  10−6/8.854 ×  10-12 ×  5.5 = 3 ×××××  106 V/m
g2 = E2 = D/ε0 εr2 = 7.5 ×  106 V/m; g3 = D/ε0 εr3 = 11 ×  ×  ×  ×  ×  106 V/m

Example 5.6.  An air capacitor has two parallel plates 10 cm2 in area and 0.5 cm apart.  When
a dielectric slab of area 10 cm2 and thickness 0.4 cm was inserted between the plates, one of the
plates has to be moved by 0.4 cm to restore the capacitance.  What is the dielectric constant of the
slab ? (Elect. Technology, Hyderabad Univ. 1992 )

Solution.  The capacitance in the first case is

Ca =
4

0 0 0
2

10 10
50.5 10

A
d

−

−

ε ε × × ε
= =

×
The capacitor, as it becomes in the second case, is shown in Fig.

5.13.  The capacitance is
Cm =

3
0 0 0

3
10

/ 50.5 10 4r

rr

A
d

−

−

ε ε × ε
= =

Σ ε ⎛ ⎞ ⎛ ⎞× +⎜ ⎟⎜ ⎟ ε⎝ ⎠ε⎝ ⎠

Since, Ca = Cm ∴ 0
5
ε  = 0

(5 / 4)r

ε
ε +

∴ ε r = 5

Note.  We may use the relation derived in Art. 5.5 (ii)
Separation = (t − t/ε1) ∴ 0.4 = (0.5 − 0.5/εr) or εr = 5

Example 5.7.  A parallel plate capacitor of area, A, and plate separation, d, has a voltage, V0,
applied by a battery.  The battery is then disconnected and a dielectric slab of permittivity ε1 and
thickness, d1, (d1 < d) is inserted.  (a)  Find the new voltage V1 across the capacitor, (b)  Find the
capacitance C0 before and its value C1 after the slab is introduced.  (c)  Find the ratio V1/V0 and the
ratio C1/C0 when d1 = d/2 and ε1 = 4 ε0.

(Electromagnetic Fields and Waves AMIETE (New Scheme) June 1990)

Solution.  (b) C0 = 0 A
d

ε
; C1 = 

1 1

0 1

( )
A

d d d−⎛ ⎞+⎜ ⎟ε ε⎝ ⎠

Since d1 = d/2 and ε1 = 4 ε0  ∴  C1 = 0

0 0

8
5

2 2 4

AA
dd d

ε
=

⎛ ⎞+⎜ ⎟ε × ε⎝ ⎠
(a) Since the capacitor charge remains the same

Q = C0 V0 = C1 V1 ∴ V1 = 0 0 0
0 0

1 0

55
8 8

C A VdV V
C d A

ε
= × × =

ε

Fig. 5.13
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(c) As seen from above, V1 = V0 5/8 ; C1 C0 = 0

0

8 5
5 8

A d
d A

ε
× =

ε

Tutorial Problems No. 5.1
1. Two parallel plate capacitors have plates of an equal area, dielectrics of relative permittivities εr1 and

εr2 and plate spacing of d1 and d2.  Find the ratio of their capacitances if εr1/εr2 = 2 and d1/d2 = 0.25.
[C1/C2 = 8]

2. A capacitor is made of two plates with an area of 11 cm2 which are separated by a mica sheet 2 mm
thick.  If for mica εr = 6, find its capacitance. If, now, one plate of the capacitor is moved further to give an air
gap 0.5 mm wide between the plates and mica, find the change in capacitance.

[29.19 pF, 11.6 pF]
3. A parallel-plate capacitor is made of two plane circular plates separated by d cm of air.  When a

parallel-faced plane sheet of glass 2 mm thick is placed between the plates, the capacitance of the system is
increased by 50% of its initial value.  What is the distance between the plates if the dielectric constant of the
glass is 6 ?

[0.5 ×××××  10−−−−−3 m]

4. A p.d. of 10 kV is applied to the terminals of a capacitor consisting of two circular plates, each
having an area of 100 cm2 separated by a dielectric 1 mm thick.  If the capacitance is 3 ×  10−4 μ F, calculate

(a) the total electric flux in coulomb 
(b) the electric flux density and
(c) the relative permittivity of the dielectric.

[(a) 3 × × × × × 10−−−−−6C (b) 3 × × × × × 10−−−−−4 μμμμμ C/m2  (c) 3.39]
5. Two slabs of material of dielectric strength 4 and 6 and of thickness 2 mm and 5 mm respectively are

inserted between the plates of a parallel-plate capacitor.  Find by how much the distance between the plates
should be changed so as to restore the potential of the capacitor to its original value.

[5.67 mm]

6. The oil dielectric to be used in a parallel-plate capacitor has a relative permittivity of 2.3 and the
maximum working potential gradient in the oil is not to exceed 106 V/m.  Calculate the approximate plate area
required for a capacitance of 0.0003 μ F, the maximum working voltage being 10,000 V.

[147 ×××××  10−−−−−3 m2]
7. A capacitor consist of two metal plates, each 10 cm square placed parallel and 3 mm apart.  The

space between the plates is occupied by a plate of insulating material 3 mm thick.  The capacitor is charged to
300 V.

(a) the metal plates are isolated from the 300 V supply and the insulating plate is removed.  What is
expected to happen to the voltage between the plates ?

(b) if the metal plates are moved to a distance of 6 mm apart, what is the further effect on the voltage
between them.  Assume throughout that the insulation is perfect.

[300 εεεεεr ; 600 εεεεεr ; where εεεεεr is the relative permittivity of the insulating material]
8. A parallel-plate capacitor has an effecting plate area of 100 cm2 (each plate) separated by a dielectric

0.5 mm thick.  Its capacitance is 442 μμ F and it is raised to a potential differences of 10 kV.  Calculate from
first principles

(a) potential gradient in the dielectric (b)  electric flux density in the dielectric
(c) the relative permittivity of the dielectric material.

[(a) 20 kV/mm (b) 442 μμμμμC/m2(c) 2.5]
9. A parallel-plate capacitor with fixed dimensions has air as dielectric.  It is connected to supply of p.d.

V volts and then isolated.  The air is then replaced by a dielectric medium of relative permittivity 6.  Calculate
the change in magnitude of each of the following quantities.

(a) the capacitance (b)  the charge (c)  the p.d. between the plates
(d) the displacement in the dielectric (e)  the potential gradient in the dielectric.

[(a) 6 : 1 increase (b) no change (c) 6 : 1 decrease (d) no change (e) 6 : 1 decrease]
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5.8. Cylindrical Capacitor

A single-core cable or cylindrical capacitor consisting two
co-axial cylinders of radii a and b metres, is shown in Fig. 5.14.
Let the charge per metre length of the cable on the outer surface
of the inner cylinder be + Q coulomb and on the inner surface of
the outer cylinder be − Q coulomb.  For all practical purposes,
the charge + Q coulomb/metre on the surface of the inner cylin-
der can be supposed to be located along its axis.  Let εr be the
relative permittivity of the medium between the two cylinders.
The outer cylinder is earthed.

Now, let us find the value of electric intensity at any point
distant x metres from the axis of the inner cylinder.  As shown in
Fig. 5.15, consider an imaginary co-axial cylinder of radius x
metres and length one metre between the two given cylinders.
The electric field between the two cylinders is radial as shown.
Total flux coming out radially from the curved surface of this
imaginary cylinder is Q coulomb. Area of the curved surface = 2
π x ×  1 = 2 π x m2.

Hence, the value of electric flux density on the surface of the
imaginary cylinder is

D = 2
flux in coulomb
area in metre

Q
A A
ψ= = C/m2 ∴D = 

2
Q

xπ
C/m2

The value of electric intensity is
E =

0 r

D
ε ε

or E  =  
02 r

Q
xπ ε ε

 V/m

Now, dV = − E dx

or V =
0

.
2

a a

b b r

Q dxE dx
x

− = −
πε ε∫ ∫

=
0 0

log
2 2

a a
bbr r

Q Qdx x
x

− −=
πε ε πε ε∫

= ( )
0 0

(log log ) log
2 2e e e

r r

Q Q aa b
b

− −− =
πε ε πε ε

 = ( )
0

log
2 e

r

Q a
bπε ε

Q
V

= ( )
02

log
r

e
b
a

πε ε
∴ C =  ( ) ( ) ( )0

10

10

2
F/m log 2.3 log

2.3 log
r

e
b b
a ab

a

πε ε ⎛ ⎞=⎜ ⎟⎝ ⎠
 

The capacitance of l metre length of this cable is C = 
( )

0

10

2

2.3 log
r l

b
a

πε ε F

In case the capacitor has compound dielectric, the relation becomes

C =
( )

02

log /e r

l
b
a

πε

Σ ε
F

The capacitance of 1 km length of the cable in μ F can be found by putting l = 1 km in the above
expression.

C = ( ) ( )
12

10 10

2 8.854 10 1000 0.024
F/km = F/km

2.3 log log
r r

b b
a a

−π × × × ε × ε
μ

Fig. 5.14
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5.9. Potential Gradient in a Cylindrical Capacitor

It is seen from Art. 5.8 that in a cable capacitor

E =
02 r

Q
xπε ε

 V/m

where x is the distance from cylinder axis to the point under consider-
ation.

Now E = g ∴ g = 
02 r

Q
xπε ε

 V/m ...(i)

From Art. 5.8, we find that V = ( )
0

log
2 e

r

Q b
aπε ε or Q = ( )

02

log
r

e

V
b
a

πε ε

Substituting this value of Q in (i) above, we get

g = ( )
0

0

2

log 2
r

e r

V
b x
a

πε ε

× πε ε
 V/m  or  g = ( )loge

V
bx
a

V/m or g  = ( )102.3 log

V
bx
a

volt/metre

Obviously, potential gradient varies inversely as x.
Minimum value of x = a, hence maximum value of potential gradient is

gmax = ( )102.3 log

V
ba
a

V/m ...(ii)

Similarly, gmax = ( )102.3 log

V
bb
a

 V/m

Note.  The above relation may be used to obtain most economical dimension while designing a cable.  As
seen, greater the value of permissible maximum stress Emax, smaller the cable may be for given value of V.
However, Emax is dependent on the dielectric strength of the insulating material used.

If V and Emax are fixed, then Eq. (ii) above may be written as

Emax = ( )loghe

V
ba
a

  or  a logh ( )b
a  = 

max

V b
E a

∴  = ek/a or b = a ek/a

For most economical cable db/da = 0

∴ db
da

= 0 = ek/a + a (− k/a2)ek/a or a = k = V/Emax  and  b = ae = 2.718 a

Example 5.8.  A cable is 300 km long and has a conductor of 0.5 cm in diameter with an
insulation covering of 0.4 cm thickness.  Calculate the capacitance of the cable if relative permittiv-
ity of insulation is 4.5. (Elect. Engg. A.M.Ae. S.I.)

Solution.  Capacitance of a cable is C = ( )10

0.024

log
r

b
a

ε
  μ F/km

Here,  a = 0.5/2 = 0.25 cm ; b = 0.25 + 0.4 = 0.65 cm ; b/a = 0.65/0.25 = 2.6 ; log10
2.6 = 0.415

∴ C = 0.024 4.5
0.415

×  = 0.26

Total capacitance for 300 km is = 300 ×  0.26 = 78 μ F.
Example 5.9.  In a concentric cable capacitor, the diameters of the inner and outer cylinders

are 3 and 10 mm respectively.  If εr for insulation is 3, find its capacitance per metre.
A p.d. of 600 volts is applied between the two conductors.  Calculate the values of the electric

force and electric flux density :  (a) at the surface of inner conductor (b) at the inner surface of outer
conductor.

Fig. 5.15
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Solution.  a = 1.5 mm ; b = 5 mm ; ∴  b/a = 5/1.5 = 10/3 ; log10 ( )10
3

 = 0.523

C = ( )
12

0

10

2 2 8.854 10 3 1
2.3 0.5232.3 log

r l
b
a

−πε ε π × × × ×=
×

 = 138.8 ×  10−12 F = 138.8 pF

(a) D = Q/2π a
Now Q = CV = 138.8 ×  10−12 ×  600 = 8.33 ×  10−9 C

D = 8.33 ×  10−8/2π ×  1.5 ×  10−3 = 8.835 μ μ μ μ μ C/m2

E = D/ε0 εr = 332.6 V/m

(b) D =
8

3
8.33 10

2 5 10

−

−
×

π × ×
C/m2 = 2.65 μμμμμ C/m2 ;  E = D/ε0 ε r = 99.82 V/m.

Example 5.10.  The radius of the copper core of a single-core rubber-insulated cable is 2.25
mm.  Calculate the radius of the lead sheath which covers the rubber insulation and the cable
capacitance per metre.  A voltage of 10 kV may be applied between the core and the lead sheath with
a safety factor of 3.  The rubber insulation has a relative permittivity of 4 and breakdown field
strength of 18 × 106 V/m.

Solution.  As shown in Art. 5.9, gmax = ( )102.3 log

V
ba
a

Now, gmax = Emax = 18 × 106 V/m ; V = breakdown voltage x
Safety factor = 104 × 3 = 30,000 V

∴ 8 × 106 = ( )3
10

30,000 2.1 or 2.1 2.25 4.72 mm
2.3 2.25 10 log

b b
ab

a
−

∴ = = × =
× × ×

C = ( )
12

0

10
10

2 2 8.854 10 4 1
2.3 log (2.1)2.3 log

r l
b
a

−π ε ε π × × × ×= =  3 × 10–9 F

5.10. Capacitance Between Two Parallel Wires

This case is of practical importance in overhead trans-
mission lines. The simplest system is 2-wire system (either
d.c. or a.c.). In the case of a.c. system, if the transmission
line is long and voltage high, the charging current drawn by
the line due to the capacitance between conductors is appre-
ciable and affects its performance considerably.

With reference to Fig. 5.16, let
d = distance between centres of the wires A and B
r = radius of each wire (≤ d)

Q = charge in coulomb/metre of each wire*
Now, let us consider electric intensity at any point P

between conductors A and B.
Electric intensity at P* due to charge + Q coulomb/metre

on A is

Fig. 5.16

* If charge on A is + Q, then on B will be − Q.

A capictor can be charged by
connecting it to a battery
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=
0

V/m
2 r

Q
xπ ε ε ...  towards B.

Electric intesity at P due to charge − Q coulomb/metre on B is

=
0

V/m
2 ( )r

Q
d xπ ε ε − ...  towards B.

Total electric intensity at P, E =
0

1 1
2 r

Q
x d x

⎛ ⎞+⎜ ⎟π ε ε −⎝ ⎠
Hence, potential difference between the two wires is

V =
0

1 1.
2

d r d r

r rr

QE dx dx
x d x

− − ⎛ ⎞= +⎜ ⎟π ε ε −⎝ ⎠∫ ∫
V =

0 0
| log log ( ) | log

2
d r

e e r e
r r

d rQ Qx d x
r

− −− − =
π ε ε π ε ε

Now C = Q/V  ∴  C = ( )
0 0 0

1010

F/m (approx.)( ) ( ) 2.3 loglog 2.3 log
r r r

e
d r d r d

rr r

π ε ε π ε ε π ε ε
= =− −

The capacitance for a length of l metres C = ( )
0

10

F
2.3 log

r
d
r

π ε ε

The capacitance per kilometre is

C =
( ) ( )

12 6

10
10

8.854 10 100 10
F/km0.01212.3 log

log

r

rd
r d

r

−π × × × ε × ×
= με=

Example 5.11. The conductors of a two-wire transmission line (4 km long) are spaced 45 cm
between centre.  If each conductor has a diameter of 1.5 cm, calculate the capacitance of the line.

Solution.  Formula used C = ( )
0

10

F
2.3 log

r
d
r

π ε ε

Here l = 4000 metres ; r = 1.5/2 cm ; d = 45 cm ; εr = 1− for air ∴ 45 2 60
1.5

d
r

×= =

C =
12

10

8.854 10 4000
2.3 log 60

−π × × × =  0.0272 × 10–6 F

[or C =
10

0.01214
log 60

  0.0272μμμμμF]

5.11. Capacitors in Series
With reference of Fig. 5.17, let

C1, C2, C3 = Capacitances of three capacitors
V1, V2, V3 = p.ds. across three capacitors.

V = applied voltage across combination
C = combined or equivalent or joining capacitance.

In series combination, charge on all capacitors is the same but p.d. across each is different.
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Fig. 5.17 Fig. 5.18

∴ V = V1 + V2 + V3

or Q
C =

1 2 3

Q Q Q
C C C

+ +

or 1
C =

1 2 3

1 1 1
C C C

+ +

For a changing applied voltage,
dV
dt = 31 2 dVdV dV

dt dt dt
+ +

We can also find values of V1, V2 and
V3 in terms of V.  Now, Q = C1 V1 = C2V2 = C3V3 = CV

where C = 1 2 3 1 2 3

1 2 2 3 3 1 1 2

C C C C C C
C C C C C C C C

=
+ + Σ

∴ C1V1 = C V or 2 3
1

1 1 2
.

C CCV V V
C C C

= =
Σ

Similarly, V2 = 1 3 1 2
3

1 2 1 2
and

C C C C
V V V

C C C C
⋅ = ⋅

Σ Σ

5.12. Capacitors in Parallel
In this case, p.d. across each is the same but charge on each is different (Fig. 5.18).
∴ Q = Q1 + Q2 + Q3 or CV = C1V + C2V + C3V or C = C1 + C2 + C3
For such a combination, dV/dt is the same for all capacitors.
Example 5.12.  Find the Ceq of the circuit shown in Fig. 5.19.  All capacitances are in μ F.

(Basic Circuit Analysis Osmania Univ. Jan./Feb. 1992)
Solution.  Capacitance between C and D = 4 + 1 || 2 = 14/3 μ F.

Capacitance between A and B i.e. Ceq = 3 + 2 ||
14/3 = 4.4 μ F
Example 5.13.  Two capacitors of a capacitance

4 μF and 2 μF respectively, are joined in series
with a battery of e.m.f. 100 V.  The connections
are broken and the like terminals of the capaci-
tors are then joined.  Find the final charge on
each capacitor.

Solution.  When joined in series, let V1 and V2 be the voltages across the capacitors.  Then as
charge across each is the same.

∴ 4 × V1 = 2V2 ∴ V2 = 2V1 Also V1 + V2 = 100
∴ V1 + 2V1 = 100 ∴ V1 = 100/3 V and V2 = 200/3 V
∴ Q1 = Q2 = (200/3) × 2 = (400/3) μ C
∴ Total charge on both capacitors = 800/3 μ C
When joined in parallel, a redistribution of charge takes place because both capacitors are re-

duced to a common potential V.
Total charge = 800/3 μ C;  total capacitance = 4 + 2 = 6 μ F

∴ V = 800 400 volts
3 6 9

=
×

Fig. 5.19
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Hence Q1 = (400/9) × 4 = 1600/9 = 178 μμμμμ C
Q2 = (400/9) × 2 = 800/9 = 89 μμμμμ C (approx.)

Example 5.14.  Three capacitors A, B, C have capacitances 10, 50 and 25 μF respectively.
Calculate (i) charge on each when connected in parallel to a 250 V
supply (ii) total capacitance and (iii) p.d. across each when con-
nected in series. (Elect. Technology, Gwalior Univ.)

Solution.  (i) Parallel connection is shown in Fig. 5.20 (a).
Each capacitor has a p.d. of 250 V across it.
Q1 = C1V = 10 × 250 = 2500 μμμμμ C; Q2 = 50 × 250 = 12,500 μμμμμC
Q3= 25 × 250 = 6,750 μμμμμ C.

(ii) C = C1 + C2 + C3 = 10 + 50 + 25 = 85 μμμμμF
(iii) Series connection is shown in Fig. 5.20 (b).  Here charge on

each capacitor is the same and is equal to that on the equivalent
single capacitor.

1/C = 1/C1 + 1/C2 + 1/C3 ; C = 25/4 μ F
Q = CV = 25 × 250/4 = 1562.5 μ F
Q = C1V1 ; V1 = 1562.5/10 = 156.25 V
V2 = 1562.5/25 = 62.5 V; V3 = 1562.5/50 = 31.25 V.

Example 5.15.  Find the charges on capacitors in Fig. 5.21 and the p.d. across them.
Solution.  Equivalent capacitance between points A and B is

C2 + C3 = 5 + 3 = 8 μ F
Capacitance of the whole combination (Fig. 5.21)

C = 2 1.6 F
8 2
8 × μ

+
Charge on the combination is

Q1 =CV = 100 × 1.6 = 160 μμμμμC

V1 = 1
2

1

60 80 ; 100 80
2

Q
V V

C
1= = = − = 20 V

Q1 =C2V2 = 3 × 10− 6 × 20 = 60 μμμμμC
Q3 =C3V2 = 5 × 10− 6 × 20 = 100 μμμμμC

Example 5.16.  Two capacitors A and B are connected in series across a 100 V supply and it is
observed that the p.d.s. across them are 60 V and 40 V respectively.  A capacitor of 2 μF capacitance
is now connected in parallel with A and the p.d. across B rises to 90 volts.  Calculate the capacitance
of A and B in microfarads.

Solution.  Let C1 and C2 μ F be the capacitances of the two capacitors.  Since they are connected
in series [Fig. 5.22 (a)], the charge across each is the same.

∴ 60 C1 = 40 C2 or C1/C2 = 2/3 ...(i)
In Fig. 5.22 (b) is shown a capacitor of 2 μ F connected across capacitor A.  Their combined

capacitance = (C1 + 2) μ F
∴ (C1 + 2) 10 = 90 C2 or C1/C2 = 2/3 ...(ii)
Putting  the value of C2 = 3C1/2 from (i)  in (ii) we get

1

1

2
3 /2
C

C
+

= 9 ∴ C1 + 2 = 13.5 C1

Fig. 5.20

Fig. 5.21
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or C1 = 2/12.4 = 0.16 μμμμμ F and
C2 = (3/2) × 0.16 = 0.24 μμμμμ F

Fig. 5.22

Example 5.17.  Three capacitors of 2 μ F, 5 μ F and 10 μ F have breakdown voltage of 200 V,
500 V and 100 V respectively.  The capacitors are connected in series and the applied direct voltage
to the circuit is gradually increased.  Which capacitor will breakdown first ?  Determine the total
applied voltage and total energy stored at the point of breakdown. [Bombay Univeristy 2001]

Solution.  C1 of 2 μF, C2 of 5 μ F, and C3 of 10 μF are connected
in series.  If the equivalent single capacitor is C,

1/C = 1/C1 + 1/C2 + 1/C3, which gives C = 1.25 μ F
If V is the applied voltage,

V1 = V × C/C1 = V × (1.25 / 2)
= 62.5 % of V

V2 = V × (C/C2) = C × (1.25/5) = 25 % of V
V3 = V × (C/C3) = V × (1.25/10) = 12.5 % of V

If  V1= 200 volts, V = 320 volts and V2 = 80 volts, V3 = 40 volts.
It means that, first capacitor C1 will breakdown first.
Energy stored = 1/2 CV2 = 1/2 × 1.25 × 10− 6 × 320 × 320 = 0.064 Joule
Example 5.18.  A multiple plate capacitor has 10 plates, each of area 10 square cm and separation

between 2 plates is 1 mm with air as dielectric.  Determine the energy stored  when voltage of 100
volts is applied across the capacitor. [Bombay University 2001]

Solution.  Number of plates, n = 10

C =
12 4

0
3

( 1) 9 8.854 10 10 10 79.7 pF
1 10

n
d

− −

−
− ∈ × × × ×= =

×
Energy stored = 1/2 × 79.7 × 10− 12 × 100 × 100 = 0.3985 μμμμμJ
Example 5.19.  Determine the capacitance between the points A and B in figure 5.24 (a).  All

capacitor values are in μF.

Fig. 5.24 (a)

Fig. 5.23

(a) (b)
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Solution.  Capacitances are being dealt with in this case.  For simplifying this, Delta to star
transformation is necessary.  Formulae for this transformation are known if we are dealing with resistors
or impedances.  Same formulae are applicable to capacitors provided we are aware that capacitive
reactance is dependent on reciprocal of capacitance.

Further steps are given below :

Fig. 5.24 (b) Fig. 5.24 (c)

Reciprocals of capacitances taken first :
Between B-C ⎯⎯ 0.05, Between B-D ⎯⎯  0.10
Between C-D ⎯⎯  0.05, Sum of these three = 0.20
For this delta, star-transformation is done :
Between N-C : 0.05 × 0.05/0.20 = 0.0125, its reciprocal = 80 μ F
Between N-B : 0.05 × 0.10/0.20 = 0.025,   its reciprocal = 40 μ F
Between N-D : 0.05 × 0.10/0.20 = 0.025,   its reciprocal = 40 μ F
This is marked on Fig. 5.24 (c).
With series-parallel combination of capacitances, further simplification gives the final result.

CAB = 16.13 μμμμμ F
Note :  Alternatively, with ADB as the vertices and C treated as the star point, star to delta transformation

can be done.  The results so obtained agree with previous effective capacitance of 16.14 μ F.

Example 5.20. (a)  A capacitor of 10 pF is connected to a voltage source of 100 V.  If the
distance between the capacitor plates is reduced to 50 % while it remains, connected to the 100 V
supply.  Find the new values of charge, energy stored and potential as well as potential gradient.
Which of these quantities increased by reducing the distance and why ?

[Bombay University 2000]
Solution.
(i)  C = 10 pF (ii) C = 20 pF, distance halved
Charge = 1000 p Coul Charge = 2000 p-coul
Energy = 1/2 CV2 = 0.05 μ J Energy = 0.10 μ J
Potential gradient in the second case will be twice of earlier value.
Example 5.20 (b).  A capacitor 5 μ F charged to 10 V is connected with another capacitor of

10 μ F charged to 50 V, so that the capacitors have one and the same voltage after connection.  What
are the possible values of this common voltage ? [Bombay University 2000]
Solution.  The clearer procedure is discussed here.

Initial charges held by the capacitors are represented by equivalent voltage sources in Fig. 5.25
(b).  The circuit is simplified to that in Fig. 5.25 (c).  This is the case of C1 and C2 connected in series
and excited by a 40-V source.  If C is  the equivalent capacitance of this series-combination,

1/C = 1/C1 + C2
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Fig. 5.25 (a) Fig. 5.25 (c)  Simplification

Fig. 5.25 (b).  Initial charge represented by equiv-source Fig. 5.25 (d). Final condition

This gives C = 3.33 μF
In Fig. (c), VC1 = 40 × C/C1 = 40 × 3.33/5 = 26.67 volts
VS1 and VS2 are integral parts of C1 and C2 in Fig. 5.25 (c),
Voltage across C1 = 10 + 26.67 = 36.67 (A w.r. to 0)
Voltage acorss C2 = 50 − 13.33 = 36.67, (B w.r. to 0)

Thus, the final voltage across the capacitor is 36.67 volts.
Note :  If one of the initial voltages on the capacitors happens to be the opposite to the single equivalent

source voltage in Fig. 5.25 (c) will be 60 volts.  Proceeding similarly, with proper care about signs, the final
situation will be the common voltage will be 30 volts.

5.13.  Cylindrical Capacitor with Compound Dielectric
Such a capacitor is shown in Fig. 5.26
Let r1 = radius of the core

r2 = radius of inner dielectric εr1
r3 = radius of outer dielectric εr2

Obviously, there are two capacitors joined in series.
Now

C1 = 1 2
2

10 2 1 10 3 2

0.024 0.024
F/km and F/M

log ( / ) log ( / )
r rC

r r r r
ε ε

μ = μ

Total capacitance of the cable is 1 2

1 2

C C
C

C C
=

+
A cyclindrical

Capacitor
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Now for capacitors joined in series, charge is the same.
∴ Q = C1V1 = C2V2

or 2

1

V
V = 1 10 3 21

2 1 10 2 1

log ( / )
log ( / )

r

r

r rC
C r r

ε
=

ε

From this relation, V2 and V1 can be found,

gmax in inner capacitor 1

1 10 2 12, 3 log ( / )
V

r r r

(Art. 5.9)

Similarly, gmax for outer capacitor = 2

2 10 3 22, 3 log ( / )
V

r r r

∴ 1 2

1 10 2 1 2 10 3 22.3 log ( / ) 2, 3 log ( / )
max

max

g V V
g r r r r r r

= ÷

= 10 3 2 10 3 21 2 2 2 1 2

2 1 10 2 1 1 1 10 2 1 2 1

log ( / ) log ( / )
log ( / ) log ( / )

r r r rV r C r V C
V r r r C r r r V C

⎛ ⎞× = × ∴ =⎜ ⎟
⎝ ⎠

Putting the values of C1 and C2, we get

max 1 max 110 3 2 10 2 12 2 2 2

max 2 10 3 2 1 1 10 2 1 max 2 1 1

log ( / ) log ( / )0.024 .
log ( / ) 0.024 log ( / ) .

r r

r r

g gr r r rr r
g r r r r r g r

ε ε
= × = × ∴ =

ε ε

Hence, voltage gradient is inversely proportional to the permittivity and the inner radius of the
insulating material.

Example 5.21.  A single-core lead-sheathed cable, with a conductor diameter of 2 cm is designed
to withstand 66 kV.  The dielectric consists of two layers A and B having relative permittivities of 3.5
and 3 respectively.  The corresponding maximum permissible electrostatic stresses are 72 and
60 kV/cm.  Find the thicknesses of the two layers. (Power Systems-I, M.S. Univ. Baroda)

Solution.  As seen from Art. 5.13.
max 1

max 2

g
g = 2 2 2

2
1 1

. 372or or 1.4 cm

. 60 3.5 1
r

r

r r
r

r
ε ×

= =
ε ×

Now, gmax = 1

1 10 2 1

2
2.3 log /

V
r r r

×
...Art. 5.9

where V1 is the r.m.s. values of the voltage across the first dielectric.

∴ 72 = 1
1

10

2
or 17.1 kV

2.3 1 log 1.4
V

V
×

=
× ×

Obviously, V2 = 60 − 17.1= 48.9 kV

Now, gmax 2 = 2

2 10 3 2 10 3 2

2 48.960
2.3 log ( / ) 2.3 1.4 log ( / )

V
r r r r r

×
∴ =

×

∴ log10 (r3/r2) = 0.2531 = log10 (1.79) ∴ 3
3

2
1.79 or 2.5 cm

r
r

r
= =

Fig. 5.26
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Thickness of first dielectric layer = 1.4 − 1.0 = 0.4 cm.
Thickness of second layer = 2.5 − 1.4 = 1.1 cm.

5.14. Insulation Resistance of a Cable Capacitor
In a cable capacitor, useful current flows along the axis of the core but there is always present

some leakage of current.  This leakage is radial i.e. at right angles to the flow of useful current.  The
resistance offered to this radial leakage of current is called
insulation resistance of the cable.  If cable length is greater,
then leakage is also greater.  It means that more current will
leak.  In other words, insulation resistance is decreased.
Hence, we find that insulation resistance is inversely
proportional to the cable length.  This insulation resistance
is not to be confused with conductor resistance which is
directly proportional to the cable length.

Consider i metre of a single-core cable of inner-radius r1
and outer radius r2 (Fig. 5.27).  Imagine an annular ring of
radius ‘r’ and radial thickness ‘dr’.

If resistivity of insulating material is ρ, then resistance of

the this narrow ring is 
2 2

dr drdR
r l rl

ρ ρ= =
π × π

 ∴ Insulation

resistance of l metre length of cable is

dR∫ =
2 2

11
log ( )

2 2
r r

e rr

dr or R r
rl rl

ρ ρ=
π π∫

R = 2 1 10 2 1
2.3log ( / ) log ( / )

2 2e r r r r
l l

ρρ = Ω
π π

It should be noted
(i) that R is inversely proportional to the cable length

(ii) that R depends upon the ratio r2/r1 and NOT on the thickness of insulator itself.
Example 5.22.  A liquid resistor consists of two concentric metal cylinders of diameters D = 35

cm and d = 20 cm respectively with water of specific resistance ρ = 8000 Ω cm between them.  The
length of both cylinders is 60 cm.  Calculate the resistance of the liquid resistor.

(Elect. Engg. Aligarh Univ.,)
Solution.  r1 = 10 cm ; r2 = 17.5 cm; log10 (1.75) = 0.243

ρ = 8 × 103 Ω − cm; l = 60 cm.

Resistance of the liquid resistor 
32.3 8 10 0.243 11.85 .

2 60
R × ×= × = Ω

π ×
Example 5.23.  Two underground cables having conductor resistances of 0.7 Ω and 0.5 and

insulation resistance of 300 M Ω respectively are joind (i) in series (ii) in parallel.  Find the resultant
conductor and insulation resistance. (Elect. Engineering, Calcutta Univ.)

Solution.  (i)  The conductor resistance will add like resistances in series.  However, the leakage
resistances will decrease and would be given by the reciprocal relation.

Total conductor resistance = 0.7 + 0.5 = 1.2 Ω
If R is the combined leakage resistance, then

1 1 1
300 600R

= + ∴ R = 200 M Ω

Fig. 5.27
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(ii) In this case, conductor resistance is = 0.7 × 0.5/(0.7 + 0.5) = 0.3. ΩΩΩΩΩ (approx)
Insulation resistance = 300 + 600 = 900 M ΩΩΩΩΩ
Example 5.24.  The insulation resistance of a kilometre of the cable having a conductor diameter

of 1.5 cm and an insulation thickness of 1.5 cm is 500 M Ω.  What would be the insulation resistance
if the thickness of the insulation were increased to 2.5 cm ?

(Communication Systems, Hyderadad Univ. 1992)
Solution.  The insulation resistance of a cable is

First Case R = 10 2 1
2.3 log ( / )
2

r r
l
ρ

π
r1 = 1.5/2 = 0.75 cm ; r2 = 0.75 + 1.5 = 2.25 cm

∴ r2/r1 = 2.25/0.75 = 3 ; log10 (3) = 0.4771 ∴ .3500 0.4771
2 l
2 ρ= ×

π
...(i)

Second Case
r1 = 0.75 cm − as before r2 = 0.75 + 2.5 = 3.25 cm

r2/r1 = 3.25/0.75 = 4.333 ; log10 (4.333) = 0.6368 ∴ 2.4 0.6368
2

R
l
ρ= ×

π
...(ii)

Dividing Eq. (ii) by Eq. (i), we get
0.6368 ; 500 0.6368 / 0.4771 667.4

500 0.4771
R R= = × = Μ Ω

5.15. Energy Stored in a Capacitor
Charging of a capacitor always involves some ex-

penditure of energy by the charging agency.  This energy
is stored up in the electrostatic field set up in the dielec-
tric medium.  On discharging the capacitor, the field col-
lapses and the stored energy is released.

To begin with, when the capacitor is uncharged, little
work is done in transferring charge from one plate to
another.  But further instalments of charge have to be
carried against the repulsive force due to the charge
already collected on the capacitor plates.  Let us find the
energy spent in charging a capacitor of capacitance C to
a voltage V.

Suppose at any stage of charging, the p.d. across the
plates is v.  By definition, it is equal to the work done in
shifting one coulomb from one plate to another.  If ‘dq’
is charge next transferred, the work done is

dW = v.dq
Now q = Cv ∴ dq = C.dv ∴ dW = Cv.dv
Total work done in giving V units of potential is

W =
2

2

0 0

1.
2 2

vv vCv dv C W CV= ∴ =∫
If C is in farads and V is in volts, then 21

2
W CV=  joules 1

2
QV=  joules = 

2

2
Q

C  joules

If Q is in coulombs and C is in farads, the energy stored is given in joules.

Capacitors on a motherboard
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Note :  As seen from above, energy stored in a capacitor is 21
2

E CV=

Now, for a capacitor of plate area A m2 and dielectric of thickness d metre, energy per unit volume of
dielectric medium. 22 2 2 2 31 1 1 1 1. / 2 joules/m

2 2 2 2 2
CV A V V E DE D
Ad d Ad d

                
*

It will be noted  that the formula 1
2 DE  is similar to the expression 1

2  stress × strain which is used for
calculating the mechanical energy stored per unit volume of a body subjected to elastic stress.

Example 5.25.  Since a capacitor can store charge just like a lead-acid battery, it can be used at
least theoretically as an electrostatic battery.  Calculate the capacitance of 12-V electrostatic battery
which the same capacity as a 40 Ah, 12 V lead-acid battery.

Solution.  Capacity of the lead-acid battery = 40 Ah = 40 × 36 As = 144000 Coulomb
Energy stored in the battery = QV = 144000 × 12 = 1.728 × 106 J

Energy stored in an electrostatic battery = 21
2

CV

∴ 2 6 41 12 1.728 10 2.4 10 F 24 kF
2

C C× × = × ∴ = × =

Example 5.26.  A capacitor-type stored-energy welder is to deliver the same heat to a single
weld as a conventional welder that draws 20 kVA at 0.8 pf for 0.0625 second/weld.  If C = 2000 μF,
find the voltage to which it is charged. (Power Electronics, A.M.I.E. Sec B, 1993)

Solution.  The energy supplied per weld in a conventional welder is
W = VA ×  cos φ ×  time = 20,000 ×  0.8 ×  0.0625 = 1000 J

Now, energy stored in a capacitor is (1/2) CV2

∴ W = 2
6

2 2 10001 or
2 2000 10

WCV V
C −

×= = =
×

 1000 V

Example 5.27.  A parallel-plate capacitor is charged to 50 μC at 150 V.  It is then connected to
another capacitor of capacitance 4 times the capacitance of the first capacitor.  Find the loss of
energy. (Elect. Engg. Aligarh Univ.)

Solution.  C1 = 50/150 = 1/3 μF ; C2 = 4 × 1/3 = 4/3 μF
Before Joining

E1 = 2 6 2 4
1 1 2

11 1 10 150 37.5 10 J ; 0
2 2 3

C V E− −⎛ ⎞= × × = × =⎜ ⎟⎝ ⎠
Total energy = 37.5 × 10− 4 J

After Joining
When the two capacitors are connected in parallel, the charge of 50 μ C gets redistributed and the

two capacitors come to a common potential V.

V =
total charge 50 30 V

total capacitance [(1/ 3) (4 / 3)] F
Cμ= =

+ μ

E1 = 6 2 41 (1/3) 10 30 1.5 10 J
2

− −× × × = ×

E2 = 6 2 41 (4/3) 10 30 6.0 10 J
2

− −× × × = ×

Total energy = 7.5 × 10− 4 J ;  Loss of energy = (37.5 − 7.5) × 10− 4 = 3 × 10−−−−− 2 J
The energy is wasted away as heat in the conductor connecting the two capacitors.

* It is similar to the expression for the energy stored per unit volume of a magnetic field.
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Example 5.28.  An air-capacitor of capacitance 0.005 μ F is connected to a direct voltage of
500 V, is disconnected and then immersed in oil with a relative permittivity of 2.5.  Find the energy
stored in the capacitor before and after immersion. (Elect.  Technology : London Univ.)

Solution.  Energy before immersion is

E1 = 2 6 21 1 0.005 10 500
2 2

CV −= × × × =  625 × 10–6 J

When immersed in oil, its capacitance is increased 2.5 times.  Since charge is constant, voltage
must become 2.5 times.  Hence, new capacitances is 2.5 × 0.005 = 0.0125 μF and new voltage is
500/2.5 = 200 V.

E2 = 6 21 0.0125 10 (200)
2

−× × × =  250 × 10–6 J

Example 5.29.  A parallel-plate air capacitor is charged to 100 V.  Its plate separation is 2 mm
and the area of each of its plate is 120 cm2.

Calculate and account for the increase or decrease of stored energy when plate separation is
reduced to 1 mm

(a) at constant voltage (b) at constant charge.
Solution.  Capacitance is the first case

C1 =
12 4

120
3

8.854 10 120 10 53.1 10 F
2 10

A
d

− −
−

−
ε × × ×= = ×

×
Capacitance in the second case i.e. with reduced spacing

C2 =
12 4

12
3

8.854 10 120 10 106.2 10 F
1 10

− −
−

−
× × × = ×

×
(a) When Voltage is Constant

Change in stored energy dE = 2 2
2 1

1 1
2 2

C V C V 

= 2 121 100 (106.2 53.1) 10
2

−× × − × =  26.55 × 10–8 J

This represents an increase in the energy of the capacitor.  This extra work has been done by the
external supply source because charge has to be given to the capacitor when its capacitance increases,
voltage remaining constant.

(b) When Charge Remains Constant

Energy in the first case E1 =
2

1

1 ;
2

Q
C  Energy in the second case, 

2

2
2

1
2

QE
C

=

∴ change in energy is dE = 2 1211 1 10 J
2 53.1 106.2

Q ⎛ ⎞− ×⎜ ⎟⎝ ⎠

= 2 12
1 1

11 1( ) 10 J
2 53.1 106.2

C V ⎛ ⎞− ×⎜ ⎟⎝ ⎠

= 12 2 4 121 (53.1 10 ) 10 0.0094 10
2

−× × × ×

= 13.3 × 10−−−−− 8 joules
Hence, there is a decrease in the stored energy.  The reason is that charge remaining constant,

when the capacitance is increased, then voltage must fall with a consequent decrease in stored energy
1( )
2

E QV=
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Example 5.30.  A point charge of 100 μC is embedded in an extensive mass of bakelite which
has a relative permittivity of 5.  Calculate the total energy contained in the electric field outside a
radial distance of (i) 100 m (ii) 10 m (iii) 1 m and (iv) 1 cm.

Solution.  As per the Coulomb’s law, the electric field intensity at any distance x from the point
charge is given by E = Q/4 π ε x2.  Let us draw a spherical shell of radius x as shown in Fig.  Another
spherical shell of radius (x + dx) has also been drawn.  A differential volume of the space enclosed
between the two shells is dv = 4 π x2 dx.  As per Art. 5.15, the energy stored per unit volume of the
electric field is (1/2) DE.  Hence, differential energy contained in the small volume is

dW =
2 2

2 2
2 2

1 1 1 4 .
2 2 2 84

Q Q dxDE d E d x dx
x x

⎛ ⎞
ν = ε ν = ε π =⎜ ⎟⎜ ⎟ π επ ε⎝ ⎠

Total energy of the electric field extending from x = R to x = ∞ is

W =
2 2 2

2

08 8 8R r

Q Q Qx dx
R R

∞ − = =
π ε π ε π ε ε∫

(i) The energy contained in the electic field lying outside  a radius of R = 100 m is

W =
6 2

12
(100 10 )

8 8.854 10 5 100

−

−
× =

π × × × ×
 0.90 J

(ii) For R = 10 m, W = 10 × 0.09 = 0.09 J
(iii) For R = 1 m, W = 100 × 0.09 = 9 J
(iv) For R = 1 cm, W = 10,000 × 0.09 = 900 J
Example 5.31.  Calculate the change in the stored energy of a parallel-plate capacitor if a

dielectric slab of relative permittivity 5 is introduced between its two plates.
Solution.  Let A be the plate area, d the plate separation, E the electric field intensity and D the

electric flux density of the capacitor.  As per Art. 5.15, energy stored per unit volume of the field is
= (1/2) DE.  Since the space volume is d × A, hence,

W1 = 2 1
1 1 0 1 0

1 1 1
2 2 2

V
D E dA E dA dA

d

2⎛ ⎞× = ε × = ε ⎜ ⎟⎝ ⎠
When the dielectric slab is introduced,

W2 =
2

2 2
2 2 2 0

1 1 1
2 2 2 r

V
D E dA E dA dA

d
⎛ ⎞× = ε × = ε ε ⎜ ⎟⎝ ⎠

=
2 2

2 1 1
0 0 2

1 1 1
2 2r

r r r

V V W
dA dA W

d d
⎛ ⎞ ⎛ ⎞ε ε = ε ∴ =⎜ ⎟ ⎜ ⎟ε ε ε⎝ ⎠⎝ ⎠

It is seen that the stored energy is reduced by a factor of εr.  Hence, change in energy is

dW = 1 2 1 1 1
1

11 41 1
5 5r

dWW W W W W
W

⎛ ⎞⎛ ⎞− = − = − = × ∴ =⎜ ⎟⎜ ⎟ε ⎝ ⎠⎝ ⎠
 0.8

Example 5.32.  When a capacitor C charges through a resistor R from a d.c. source voltage E,
determine the energy appearing as heat. [Bombay University, 2000]

Solution.  R-C series ciruit switched on to a d.c.  source of voltage E, at t = 0, results into a
current i (t), given by

i (t) = (E/R) e− t/τ

where t = RC
Δ WR = Energy appearing as heat in time Δt
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= i2 R Δt
Δ WR = Energy appearing as heat in time Δt

= i2 R Δt

WR = 2

0
R i dt

∞

∫
= 2 / 2 2

0

1( / ) ( )
2

tR E R CE
∞ − τε =∫

Note :  Energy stored by the capacitor at the end of charging process = 1/2 CE2

Hence, energy received from the source = CF.

5.16. Force of Attraction Between Oppositely-charged Plates

In Fig. 5.28 are shown two parallel conducting plates A and B
carrying constant charges of + Q and − Q coulombs respectively.  Let
the force of attraction between the two be F newtons.  If one of the
plates is pulled apart by distance dx, then work done is

= F × dx joules ...(i)
Since the plate charges remain constant, no electrical energy comes

into the arrangement during the movement dx.
∴ Work done = change in stored energy

Initial stored energy 21 joules
2

Q
C

=

If capacitance becomes (C − dC) due to the movement dx, then

Final stored energy 
2 2 21 1 1 1. 1 if

2 ( ) 2 2
1

Q Q Q dC dC C
C dC C C CdC

C

                    

∴ Change in stored energy 
2 2 2

2
1 1 11 .
2 2 2

Q Q QdC dC
C C C C

⎛ ⎞= + − =⎜ ⎟⎝ ⎠
...(ii)

Equating Eq. (i) and (ii), we have F.dx =
2

2
1 .
2

Q dC
C

F =
2

2
2

1 1. .
2 2

Q dC dCV
dx dxC

= (ä V = Q/C)

Now C = 2
A AdC

x dx x
ε ε∴ = −

∴ F = ( )2
2 2

2
1 1 1. newtons newtons
2 2 2

A VV A A E
xx

ε− = − ε = − ε

This represents the force between the plates of a parallel-plate capacitor charged to a p.d. of V
volts.  The negative sign shows that it is a force of attraction.

Example 5.33.  A parallel-plate capacitor is made of plates 1 m square and has a separation of
1 mm.  The space between the plates is filled with dielectric of εr = 25.0.  If 1 k V potential difference
is applied to the plates, find the force squeezing the plates together.

(Electromagnetic Theory, A.M.I.E. Sec B, 1993)
Solution.  As seen from Art. 5.16, F = − (1/2) ε0 εr AE2 newton
Now E = V/d = 1000/1 × 10−3 = 10−6 V/m

Fig. 5.28
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∴ 2 12 6 2 4
0

1 1 8.854 10 25 1 (10 ) 1.1 10 N
2 2rF AE − −= − ε ε = − × × × × × = − ×

Tutorial Porblems No. 5.2
1. Find the capacitance per unit length of a cylindrical capacitor of which the two conductors have radii

2.5 and 4.5 cm and dielectric consists of two layers whose cylinder of contact is 3.5 cm in radius, the
inner layer having a dielectric constant of 4 and the outer one of 6.

[440 pF/m]
2. A parallel-plate capacitor, having plates 100 cm2 area, has three dielectrics 1 mm each and of

permittivities 3, 4 and 6.  If a peak voltage of 2,000 V is applied to the plates, calculate :
(a)  potential gradient across each dielectric
(b)  energy stored in each dielectric.

[8.89 kV/cm; 6.67 kV/cm ; 4.44 kV/cm ; 1047, 786, 524 × 10−−−−− 7 joule]
3. The core and lead-sheath of a single-core cable are separated by a rubber covering.  The cross-

sectional area of the core is 16 mm2.  A voltage of 10 kV is applied to the cable.  What must be the
thickness of the rubber insulation if the electric field strength in it is not to exceed 6 × 106 V/m ?

[2.5 mm (approx)]
4. A circular conductor of 1 cm diameter is surrounded by a concentric conducting cylinder having an

inner diameter of 2.5 cm.  If the maximum electric stress in the dielectric is 40 kV/cm, calculate the
potential difference between the conductors and also the minimum value of the electric stress.

[18.4 kV ; 16 kV/cm]
5. A multiple capacitor has parallel plates each of area 12 cm2 and each separated by a mica sheet

0.2 mm thick.  If dielectric constant for mica is 5, calculate the capacitance.
[265.6 μμμμμμμμμμF]

6. A p.d. of 10 kV is applied to the terminals of a capacitor of two circular plates each having an area of
100 sq. cm. separated by a dielectric 1 mm thick.  If the capacitance is 3 × 10− 4 microfarad, calculate
the electric flux density and the relative permittivity of the dielectric.

[D = 3 × 10−−−−− 4 C/m2, εεεεεr= 3.39] (City & Guilds, London)
7. Each electrode of a capacitor of the electrolytic type has an area of 0.02 sq. metre.  The relative

permittivity of the dielectric film is 2.8.  If the capacitor has a capacitance of 10 μF, estimate the
thickness of the dielectric film. [4.95 × 10−−−−− 8 m] (I.E.E. London)

5.17. Current-Voltage Relationships in a Capacitor
The charge on a capacitor is given by the expression Q = CV.  By differentiating this relation, we

get

i = ( )dQ d dVCV C
dt dt dt

= =

Following important facts can be deduced from the above relations :

(i) since Q = CV, it means that the voltage across a capacitor is proportional to charge, not the
current.

(ii) a capacitor has the ability to store charge and hence to provide a short of memory.
(iii) a capacitor can have a voltage across it even when there is no current flowing.
(iv) from i = c dV/dt, it is clear that current in the capacitor is present only when voltage on it

changes with time.  If dV/dt = 0 i.e. when its voltage is constant or for d.c. voltage, i = 0.
Hence, the capacitor behaves like an open circuit.
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(v) from i = C dV/dt, we have dV/dt = i/C.  It shows that for a given value of (charge or dis-
charge) current i, rate of change in voltage is inversely proportional to capacitance.  Larger
the value of C, slower the rate of change in capacitive voltage.  Also, capacitor voltage
cannot change instantaneously.

(vi) the above equation can be put as .idv dt
C

=

Integrating the above, we get 
0

1 1. or
t

dv i dt dv i dt
C C

= =∫ ∫ ∫
Example 5.34.  The voltage across a 5 μF capacitor changes uniformly from 10 to 70 V in 5 ms.

Calculate (i) change in capacitor  charge (ii) charging current.
Solution. Q = CV ∴dQ = C . dV and i = C dV/dt
(i) dV = 70 − 10 = 60 V, ∴ dQ = 5 × 60 = 300 μμμμμ C.
(ii) i = C . dV/dt = 5 × 60/5 = 60 mA
Example 5.35.  An uncharged capacitor of 0.01 F is charged first by a current of 2 mA for 30

seconds and then by a current of 4 mA for 30 seconds.  Find the final voltage in it.
Solution.  Since the capacitor is initially uncharged, we will use the principle of Superposition.

V1 = 
30 3 3

0

1 2 10 . 100 2 10 30 6 V
0.01

dt− −× = × × × =∫
V2 = 

30 3 3
1 20

1 4 10 . 100 4 10 30 12 V ; 6 12
0.01

dt V V V− −× = × × × = ∴ = + = + =∫  18 V

Example 5.36.  The voltage across two series-connected 10 μ F capacitors changes uniformly
from 30 to 150 V in 1 ms.  Calculate the rate of change of voltage for (i) each capacitor and
(ii) combination.

Solution.  For series combination

V1 = 2 1
2

1 2 1 2

2and .
3 3

C CV VV V V
C C C C

= = =
+ +

When V = 30 V V1 = V/3 = 30/3 = 10 V ; V2 = 2V/3 = 2 × 30/3 = 20 V
When V = 150 V V1 = 150/3 = 50 V and V2 = 2 × 150/3 = 100 V

(i) ∴ 1dV
dt =

(50 10)
1 ms

− =  ;40 kV/s 2 (100 20) V
1 ms

dV
dt

−= =  80 kV/s

(ii) dV
dt =

(150 30)
1 ms

− =  120 kV/s

It is seen that dV/dt = dV1/dt + dV2/dt.

5.18. Charging of a Capacitor
In Fig. 5.29. (a) is shown an arrangement by which a capacitor C may be charged through a high

resistance R from a battery of V volts.  The voltage across C can be measured by a suitable voltmeter.
When switch S is connected to terminal (a), C is charged but when it is connected to b, C is short
circuited through R and is thus discharged.  As shown in Fig. 5.29. (b), switch S is shifted to a for
charging the capacitor for the battery.  The voltage across C does not rise to V instantaneously but
builds up slowly i.e. exponentially and not linearly.  Charging current ic is maximum at the start i.e.
when C is uncharged, then it decreases exponentially and finally ceases when p.d. across capacitor
plates becomes equal and opposite to the battery voltage V.  At any instant during charging, let

vc = p.d. across C; ic = charging current
q = charge on capacitor plates
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Fig. 5.29

The applied voltage V is always equal to the sum of :
(i) resistive drop (ic R) and (ii) voltage across capacitor (vc)
∴ V = ic R + vc ...(i)

Now ic = ( ) c c
c c

dv dvdq d Cv C V v CR
dt dt dt dt

= = ∴ = + ...(ii)

or c

c

dv dt
V v CR

− = −
−

Integrating both sides, we get 1 ; log ( )c
c c

c

d V tdt V v K
V v CR CR
−

= − ∴ − = − +
−∫ ∫ ...(iii)

where K is the constant of integration whose value can be found from initial known conditions.  We
know that at the start of charging when t = 0, vc = 0.

Substituting these values in (iii), we get logc V = K

Hence, Eq. (iii) becomes loge (V − vc) = loge
t V

CR
− +

or log c
c

V v
V
−

= 1t
CR
− = −

λ  where λ = CR = time constant

∴ / or (1 )t tc
c

V v
e v V e

V
− λ − /λ−

= = − ...(iv)

This gives variation with time of voltage across the capacitor plates and is shown in Fig. 5.27.(a)
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Fig. 5.30

Now vc = q/C and V = Q/C

Equation (iv) becomes /(1 ) (1 )t tq Q e q Q e
c c

− /λ − λ= − ∴ = − ...(v)

We find that increase of charge, like growth of potential, follows an exponential law in which the
steady value is reached after infinite time (Fig. 5.30 b).  Now, ic = dq/dt.

Differentiating both sides of Eq. (v), we get
dq
dt = / /1(1 )t t

c
di Q e Q e
dt

− λ − λ⎛ ⎞= − = +⎜ ⎟λ⎝ ⎠

= / /t tQ CVe e
CR

− λ − λ=
λ (ä Q = CV and λ = CR)

∴ ic = / /. ort t
c o

V e i I e
R

− λ − λ= ...(vi)

where I0 = maximum current = V/R
Exponentially rising curves for vc and q are shown in Fig. 5.30 (a) and (b) respectively.

Fig. 5.30 (c) shows the curve for exponentially decreasing charging current.  It should be particularly
noted that ic decreases in magnitude only but its direction of flow remains the same i.e. positive.

As charging continues, charging current decreases according to equation (vi) as shown in Fig.
5.30 (c).  It becomes zero when t = ∞ (though it is almost zero in about 5 time constants).  Under
steady-state conditions, the circuit appears only as a capacitor which means it acts as an open-circuit.
Similarly, it can be proved that vR decreases from its initial maximum value of V to zero exponentially
as given by the relation vR = V e− t/λ.

5.19. Time Constant
(a) Just at the start of charging, p.d. across capacitor is zero, hence from (ii) putting vc = 0, we get

V = cdv
CR

dt

∴ initial rate of rise of voltage across the capacitor is* 
0

volt/secondc

t

dv V V
dt CR=

⎛ ⎞= = =⎜ ⎟ λ⎝ ⎠
If this rate of rise were maintained, then time taken to reach voltage V would have been

V + V/CR = CR.  This time is known as time constant (λ) of the circuit.

* It can also be found by differentiating Eq. (iv) with respect to time and then putting t = 0.
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Hence, time constant of an R-C circuit is defined as the time during which voltage across ca-
pacitor would have reached its maximum value V had it maintained its initial rate of rise.

(b) In equation (iv) if t = λ, then
/ / 1 1 1(1 ) (1 ) (1 ) 1 1

2.718
t t

cv V e V e V e V V
e

− λ − λ − ⎛ ⎞ ⎛ ⎞= − = − = − = − = − =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 0.632 V

Hence, time constant may be defined as the time during which capacitor voltage actually rises
to 0.632 of its final steady value.

(c) From equaiton (vi), by putting t = λ, we get
ic = I0 e

− λ/λ = I0 e− 1 = I0/2.718 ≅  0.37 I0
Hence, the constant of a circuit is also the time during which the charging current falls to 0.37

of its initial maximum value (or falls by 0.632 of its initial value).

5.20. Discharging of a Capacitor

As shown in Fig. 5.31 (a), when S is shifted to b, C is discharged through R.  It will be seen that
the discharging current flows in a direction opposite to that the charging current as shown in Fig.
5.31(b).  Hence, if the direction of the charging current is taken positive, then that of the discharging
current will be taken as negative.  To begin with, the discharge current is maximum but then decreases
exponentially till it ceases when capacitor is fully discharged.

Fig. 5.31

Since battery is cut of the circuit, therefore, by putting V = 0 in equation (ii) of Art. 5.18, we get

0 = orc c
c c

dv dv
CR v v CR

dt dt
   c

c
dv

i C
dt

⎛ ⎞=⎜ ⎟⎝ ⎠
 

∴ c

c

dv
v = 1or logc

e e
c

dvdt tdt v k
CR v CR CR

        
At the start of discharge, when t = 0, vc = V ∴ loge V = 0 + K ; or loge V = K
Putting this value above, we get

loge vc = log or log / /e e c
t V v V t− + = − λ
λ

or   cv
V =  e− t/λ or vc = Ve− t/λ

Similarly,                               q = Q e− t/λ and ic = − I0 e
− t/λ

It can be proved that
vR = − V e− t/λ

The fall of capacitor  potential and its discharging current are shown in Fig. 5.32 (b).
One practical application of the above charging and discharging of a capacitor is found in digital

(a) (b)
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control circuits where a square-wave input is applied across an
R-C circuit as shown in Fig. 5.32 (a).  The different waveforms
of the current and voltages are shown in Fig. 5.32 (b), (c), (d),
(e).  The sharp voltage pulses of VR are used for control
circuits.

Example 5.37.  Calculate the current in and voltage drop
across each element of the circuit shown in Fig. 5.33 (a) after
switch S has been closed long enough for steady-state
conditions to prevail.

Also, calculate voltage drop across the capacitor and the
discharge current at the instant when S is opened.

Solution.  Under steady-state conditions, the capacitor be-
comes fully charged and draws no current.  In fact, it acts like
an open circuit with the result that no current flows through the
1-Ω resistor.  The steady state current ISS flows through loop
ABCD only.

Hence, ISS = 100/(6 + 4) = 10 A
Drop V6 = 100 × 6/(6 + 4) = 60 V

V4 = 100 × 4/10 = 40 V
V1 = 0 × 2 = 0 V

Voltage across the capacitor   = drop across B − C = 40 V

Fig. 5.33

Switch Open
When S is opened, the charged capacitor discharges through the loop BCFE as shown in Fig.

5.33 (b).  The discharge current is given by
ID = 40/(4 + 1) = 8 A

As seen, it flows in a direction opposite to that of ISS.
Example 5.38.  (a)  A capacitor is charged through a large non-reactive resistance by a battery

of constant voltage V.  Derive an expression for the instantaneous charge on the capacitor.
(b) For the above arrangement, if the capacitor has a capacitance of 10 μ F and the resistance

is 1 M Ω, calculate the time taken for the capacitor to receive 90% of its final charge.  Also, draw the
charge/time curve.

Solution.  (a)  For this part, please refer to Art. 5.18.
(b) λ = CR = 10 × 10− 6 × 1 × 106 = 10 s ; q = 0.9 Q
Now, q = Q (1 − e− t/l) ∴ 0.9 Q = Q (1 − e− t/10) or et/10 = 10
∴ 0.1 t loge e = loge 10 or 0.1 t = 2.3 log10 10 = 2.3 or t = 23 s

Fig. 5.32



244 Electrical Technology

The charge/time curve is similar to that shown in Fig. 5.27 (b).
Example 5.39.  A resistance R and a 4 μF capacitor are connected in series across a 200 V. d.c.

supply.  Across the capacitor is a neon lamp that strikes (glows) at 120 V.  Calculate the value of R to
make the lamp strike (glow) 5 seconds after the switch has been closed.

(Electrotechnics-I.M.S. Univ. Baroda)
Solution.  Obviously, the capacitor voltage has to rise 120 V in 5 seconds.
∴ 120 = 200 (1 − e− 5/λ) or e5/λ = 2.5 or λ = 5.464 second.
Now, λ = CR ∴ R = 5.464/4 × 10−6 = 1.366 MΩΩΩΩΩ
Example 5.40.  A capacitor of 0.1 μF is charged from a 100-V battery through a series resis-

tance of 1,000 ohms.  Find
(a) the time for the capacitor to receive 63.2 % of its final charge.
(b) the charge received in this time (c) the final rate of charging.
(d) the rate of charging when the charge is 63.2% of the final charge.

(Elect. Engineering, Bombay Univ.)
Solution.  (a)  As seen from Art. 5.18 (b), 63.2% of charge is received in a time equal to the time

constant of the circuit.
Time required = λ = CR = 0.1 × 10− 6 × 1000 = 0.1 × 10−3 = 10−−−−− 4 second
(b) Final charge, Q = CV = 0.1 × 100 = 10 μC
Charge received during this time is = 0.632 × 10 = 6.32 μ C
(c) The rate of charging at any time is given by Eq. (ii) of Art. 5.18.

d v
d t =

V v
CR
−

Initially v = 0, Hence 
d v
dt = 6 3

100
0.1 10 10

V
CR −= =

× ×
 106 V/s

(d) Here v = 0.632 V = 0.632 × 100 = 63.2 volts

∴
d v
dt = 4

100 63.2
10−

− =  368 kV/s

Example 5.41.  A series combination having R = 2 M Ω and C = 0.01 μF is connected across a
d.c. voltage source of 50 V.  Determine

(a) capacitor voltage after 0.02 s, 0.04 s, 0.06 s and 1 hour
(b) charging current after 0.02 s, 0.04 s, 0.06 s and 0.1 s.
Solution. λ = CR = 2 × 106 × 0.01 × 10− 6 = 0.02 second

Im = V/R = 50/2 × 106 = 25 μA.
While solving this question, it should be remembered that (i) in each time constant, vc increases

further by 63.2% of its balance value and (ii) in each constant, ic decreases to 37% its previous value.
(a) (i) t = 0.02 s
Since, initially at t = 0, vc = 0 V and Ve = 50 V, hence, in one time constant

vc = 0.632 (50 − 0) = 31.6 V
(ii) t = 0.04 s
This time equals two time-constants.
∴ vc = 31.6 + 0.632 (50 − 31.6) = 43.2 V
(iii) t = 0.06 s
This time equals three time-constants.
∴ vc = 43.2 + 0.632 (50 − 43.2) = 47. 5 V
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Since in one hour, steady-state conditions would be established, vc would have achieved its
maximum possible value of 50 V.

(b) (i) t = 0.02 s, ic = 0.37 × 25 = 9.25 μμμμμA
(ii) t = 0.4 s, ic = 0.37 × 9.25 = 3.4 μμμμμA

(iii) t = 0.06 s, ic = 0.37 × 3.4 = 1.26 μμμμμA
(iv) t = 0.1 s,  This time equals 5 time constants.  In this time, current falls almost to zero

value.
Example 5.42.  A voltage as shown in Fig. 5.43 (a) is applied to a series circuit consisting of a

resistance of 2 Ω in series with a pure capacitor of 100 μF.  Determine the voltage across the capacitor
at t = 0.5 millisecond. [Bombay University, 2000]

Fig. 5.34 (a)

Solution.

Fig. 5.34 (b)

τ  = RC = 0.2 milli-second
Between 0 and 0.2 m sec;
v (t) = 10 [1 − exp (− t/τ )]
At t = 0.2, v (t) = 6.32 volts
Between 0.2 and 0.4 m Sec, counting time from A indicating it as t1
v (t1) = 6.32 exp (t1/τ )
At point  B, t1 = 0.2, V = 2.325
Between 0.4 and 0.6 m Sec, time is counted from β with variable as t2,

v (t2) = 2.325 + (10 − 2.325) [1 − exp (− t2/τ )]
At C, t2 = 0.2, V = 7.716 volts.

5.21.  Transient Relations During Capacitor Charging Cycle

Whenever a circuit goes from one steady-state condition to another steady-state condition, it
passes through a transient state which is of short duration.  The first steady-state condition is called
the initial condition and the second steady-state condition is called the final condition.  In fact,
transient condition lies in between the initial and final conditions.  For example, when switch S in Fig.
5.35 (a) is not connected either to a or b, the RC circuit is in its initial steady state with no current and
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hence no voltage drops.  When S is shifted to point a, current starts flowing through R and hence,
transient voltages are developed across R and C till they achieve their final steady values.  The period
during which current and voltage changes take place is called transient condition.

The moment  switch S is shifted to point ‘a’ as shown in Fig. 5.35 (b), a charging current ic is set
up which starts charging C that is initially uncharged.  At the beginning of the transient state, ic is
maximum because there is no potential across C to oppose the applied voltage V.  It has maximum
value = V/R = I0.  It produces maximum voltage drop across R = ic R = I0R.  Also, initially, vc = 0, but
as time passes, ic decreases gradually so does vR but vc increases exponentially till it reaches the final
steady value of V.  Although V is constant, vR and vc are variable.  However, at any time V = vR + vc =
icR + vc.

At the beginning of the transient state, ic = I0, vc = 0 but vR = V.  At the end of the transient state,
ic = 0 hence, vR = 0 but vc = V.

The initial rates of change of vc, vR and ic are given
by

0

c

t

dv
dt =

⎛ ⎞
⎜ ⎟⎝ ⎠

= volt/second,V
λ

0

R

t

dv
dt =

⎛ ⎞
⎜ ⎟⎝ ⎠

= 0 volt/second
I R V= −

λ λ

0

c

t

di
dt =

⎛ ⎞
⎜ ⎟⎝ ⎠

= 0
0where

I VI
R

=
λ

These are the initial rates of change.  However, their
rate of change at any time during the charging transient
are given as under :

cdv
dt = / /;t tc Rdi dvV Ve e

dt dt
− λ − λ= − = −

λ λ
It is shown in Fig. 5.35 (c).
It should be clearly understood that a negative rate of change means a decreasing rate of change.

It does not mean that the concerned quantity has reversed its direction.

5.22.  Transient Relations During Capacitor Discharging Cycle
As shown in Fig. 5.36 (b), switch S has been shifted to b.  Hence, the capacitor undergoes the

discharge cycle.  Just before the transient state starts, ic = 0, vR = 0 and vc = V.  The moment transient

(a) (b)

Fig. 5.35

(c)
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state begins, ic has maximum value and decreases exponentially to zero at the end of the transient
state.  So does vc.  However, during discharge, all rates of change have polarity opposite to that during
charge.  For example, dvc/dt has a positive rate of change during charging and negative rate of change
during discharging.

Fig. 5.36

Also, it should be noted that during discharge, vc maintains its original polarity whereas ic reverses
its direction of flow.  Consequently, during capacitor discharge, vR also reverses its direction.

The various rates of change at any time during the discharge transients are as given in Art.

cdv
dt = / / /0; ;t t tc Rdi I dvV Ve e e

dt dt
− λ − λ − λ− = =

λ λ λ
These are represented by the curves of Fig. 5.32.

5.23. Charging and Discharging of a capacitor with Initial Charge

In Art. 5.18, we considered the case when the capacitor was initially uncharged and hence, had
no voltage across it.  Let us now consider the case, when the capacitor has an initial potential of V0
(less than V) which opposes the applied battery voltage V as shown in Fig. 5.37 (a).

As seen from Fig. 5.37 (b), the initial rate of rise of vc is now somewhat less than when the
capacitor is initially uncharged.  Since the capacitor voltage rises from an initial value of v0 to the
final value of V in one time constant, its initial rate of rise is given by

0

c

t

dv
dt =

⎛ ⎞
⎜ ⎟⎝ ⎠

= 0 0V V V V
RC

− −
=

λ
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Fig. 5.37

The value of the capacitor voltage at any time during the charging cycle is given by
vc = (V − V0)(1− e− t/λ) + V0

Fig. 5.38

However, as shown in Fig. 5.38 (a), if the initial capacitor voltage is negative with respect to the
battery voltage i.e. the capacitor voltage is series aiding the battery voltage, rate of change of vc is
steeper than in the previous case.  It is so because as shown in Fig. 5.38 (b), in one time period, the
voltage change = V − (− V0) = (V + V0).  Hence, the initial  rate of change of voltage is given by

0

c

t

dv
dt =

⎛ ⎞
⎜ ⎟⎝ ⎠

= 0 0V V V V
RC

+ +
=

λ

The value of capacitor voltage at any time during the charging cycle is given by
vc = (V + V0) (1 − e− t/λ) − V0

The time required for the capacitor voltage to attain any value of vc during the charging cycle is
given by

t = 0 0

c c

V V V V
ln RC ln

V v V v
⎛ ⎞− −⎛ ⎞

λ = ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
... when V0 is positive

t = 0 0

c c

V V V V
ln RC ln

V v V v
⎛ ⎞+ +⎛ ⎞

λ = ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
... when V0 is negative

Example 5.43.  In Fig. 5.39, the capacitor is initially uncharged and the switch S is then closed.
Find the values of I, I1, I2 and the voltage at the point A at the start and finish of the transient state.
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Solution.  At the moment of closing the
switch i.e. at the start of the transient state, the
capacitor acts as a short-circuit.  Hence, there
is only a resistance of 2 Ω in the circuit because
1 Ω resistance is shorted out thereby grounding
point A.  Hence, I1 = 0; I = I2 = 12/2 = 6A.
Obviously, VA = 0 V.

At the end of the transient state, the ca-
pacitor acts as an open-circuit.  Hence,

I2 = 0  and I = I1 = 12/(2 + 1)
= 4 A.  VA = 6 V.

Example 5.44.  Calculate the values of i2, i3, v2, v3, va, vc and vL of the network shown in Fig.
5.40 at the following times :

(i) At time, t = 0 + immediately after the switch S is closed ;
(ii) At time, t → ∞ i.e. in the steady state. (Network Analysis AMIE Sec. B Winter 1990)

Solution.  (i)  In this case the coil acts as an open
circuit, hence i2 = 0 ; v2 = 0 and vL = 20 V.

Since a capacitor acts as a short circuit i3 = 20/(5 + 4)
= 9 = 20/9 A.  Hence, v3 = (20/9) × 4 = 80/9 V and vc = 0.

(ii) Under steady state conditions, capacitor acts as
an open circuit and coil as a short circuit.  Hence, i2 = 20/
(5 + 7) = 20/12 = 5/3 A;  v2 = 7 × 5/3 = 35/3 V; vL = 0.
Also i3 = 0, v3 = 0 but vc = 20 V.

Example 5.45.  If in the RC circuit of Fig. 5.36;
R = 2 M Ω, C = 5 m F and V = 100 V, calculate

(a)  initial rate of change of capacitor voltage
(b)  initial rate of change of capacitor current

(c) initial rate of change of voltage across the 2 M Ω resistor
(d) all of the above at t = 80 s.

Solution.  (a)
0

c

t

dv
dt =

⎛ ⎞
⎜ ⎟⎝ ⎠

= 6 6
100 100

102 10 5 10
V

    
    

10     V/s

(b)
0

c

t

di
dt =

⎛ ⎞
⎜ ⎟⎝ ⎠

=
6

0 100/2 10/
10

I V R        
  

–5μμμμμA/s

(c)
0

R

t

dv
dt =

⎛ ⎞
⎜ ⎟⎝ ⎠

= 100
10

V    
 –10     V/s

(d) All the above rates of change would be zero because the transient disappears after about
5 λ = 5 × 10 = 50 s.

Example 5.46.  In Fig. 5.41 (a), the capacitor C is fully discharged, since the switch is in
position 2.  At time t = 0, the switch is shifted to position 1 for 2 seconds.  It is then returned to
position 2 where it remains indefinitely.  Calculate

(a) the maximum voltage to which the capacitor is charged when in position 1.
(b) charging time constant λ1 in position 1.
(c) discharging time constant λ2 in position 2.
(d) vc and ic at the end of 1 second in position 1.

Fig. 5.40

Fig. 5.39
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(e) vc and ic at the instant the switch is shifted to positon 2 at t = 1 second.
(f) vc and ic after a lapse of 1 second when in position 2.
(g) sketch the waveforms for vc and ic for the first 2 seconds of the above switching sequence.
Solution.  (a)  We will first find the voltage available at terminal 1.  As seen the net battery

voltage around the circuit = 40 − 10 = 30 V.  Drop across 30 K resistor = 30 × 30/(30 + 60) = 10 V.
Hence, potential of terminal 1 with respect to ground G = 40 − 10 = 30 V.  Hence, capacitor will
charge to a maximum voltage of 30 V when in position 1.

(b) Total resistance, R = [(30 K || 60 K) + 10 K] = 30 K
∴ λ1 = RC = 30 K × 10 μF = 0.3 s
(c) λ2 = 10 K × 10 μ F = 0.1 s
(d) vC = V (1 − e− t/λ1) = 30 (1 − e− 1/0.3) = 28.9 V

1/ 1/0.0330 V 1 0.0361 0.036 mA
30 K

t
C

Vi e e
R

− λ −= = = × =

(e) vC = 28.9 V at t = 1+S at position 2 but iC = −28.9 V/10 K = − 2/89 mA at t = 1+s in  position 2.

(f) 2/ 1/0.128.9 28.9 0.0013 V 0 V.t
Cv e e− λ −= = = =

2/ 1/0.128.9 2.89 0.00013 mA 0.t
Ci e e− λ −= = − = ≅

The waveform of the capacitor voltage and charging current are sketched in Fig. 5.41 (b).

Fig. 5.41

Example 5.47.  In the RC circuit of Fig. 5.42, R = 2 M Ω and C = 5 μ F, the capacitor is charged
to an initial potential of 50 V.  When the switch is closed at t = 0+, calculate

(a) initial rate of change of capacitor voltage and
(b) capacitor voltage after a lapse of 5 times the time constant i.e. 5λ.
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If the polarity of capacitor voltage is reversed,
calculate

(c) the values of the above quantities and
(d) time for vc to reach − 10 V, 0 V and 95 V.

Solution. (a)
0

c

t

dv
dt =

⎛ ⎞
⎜ ⎟⎝ ⎠

= 0V V−
λ

= 0 100 50
10

V V
RC
− −= =  5 V/s

(b) vC = (V − V0) (1 − e− t/λ) + V0
 = (100 − 50) (1− e− 5 λ / λ) = 50 = 49.7 + 50 = 99.7 V

(c) When V0 = 0 0

0

( ) 15050 V,
10

c

t

dv V V V V
dt =

− − +⎛ ⎞− = = = =⎜ ⎟ λ λ⎝ ⎠
 15 V/s

vC = (V − V0) (1 − e− t/λ) + V0 = [100 − (− 50)] (1 − e− 5) + (− 50)
= 150 (1 − e−5) − 50 = 99 V.

(d) t = 0 100 ( 50) 15010 10
100 ( 10) 110c

V V
ln ln ln

V v
−⎛ ⎞ − −⎡ ⎤ ⎛ ⎞λ = = =⎜ ⎟⎜ ⎟ ⎢ ⎥− − − ⎝ ⎠⎣ ⎦⎝ ⎠

 3.1 s

t = 100 ( 50) 15010 10
100 (0) 100

ln ln− −⎡ ⎤ ⎛ ⎞= =⎜ ⎟⎢ ⎥−⎣ ⎦ ⎝ ⎠
 4.055 s

t =
100 ( 50) 15010 10

100 95 5
ln ln− −⎡ ⎤ ⎛ ⎞= =⎜ ⎟⎢ ⎥−⎣ ⎦ ⎝ ⎠

 34 s

Example 5.48. The uncharged capacitor, if it is
initially switched to position 1 of the switch for 2 sec
and then switched to position 2 for the next two sec-
onds.  What will be the voltage on the capacitor at
the end of this period ? Sketch the variation of volt-
age across the capacitor.[Bombay University 2001]

Solution.  Uncharged capacitor is switched to
position 1 for 2 seconds.  It will be charged to 100
volts instantaneously since resistance is not present
in the charging circuit.  After 2 seconds, the capacitor
charged to 100 volts will get discharged through R-C
circuit with a time constant of

τ = RC = 1500 × 10−3 = 1.5 sec.
Counting time from instant of switching over to positon 2, the expression for voltage across the

capacitor is V (t) = 100 exp (− t/τ )
After 2 seconds in this position,

v (t) = 100 exp (− 2/1.5) = 26/36 Volts.
Example 5.49.  There are three passive elements in the circuit below and a voltage and a cur-

rent are defined for each.  Find the values of these six qualities at both t = 0− and t = 0+.
[Bombay University, 2001]

Solution.  Current source 4 u (t) means a step function of 4 amp applied at t = 0.  Other current
source of 5 amp is operative throughout.

At t = 0–, 5 amp source is operative.  This unidirectional constant current establishes a steady
current of 5 amp through 30-ohm resistor and 3-H inductor.  Note that positive VR means a rise from
right to left.

Fig. 5.42

Fig. 5.43
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At t = 0
VR = − 150 Volts (Since right-terminal of Resistor is + ve)
iL = 5 amp

VL = 0, it represents the voltage between B and O.
iC = 0

VC = 150 volts = VBO + (Voltage between A and B with due regards to sign).
= 0 − (− 150) = + 150 volts

Fig. 5.44 (a)

At t = O+, 4 amp step function becomes operative.  Capacitive-voltage and Inductance-current
cannot change abruptly.

Hence iL (0+) = 5 amp
VC(O+) = 150 amp
VC(O+) = 150 volts, with node A positive with respect to 0.
With these two values known, the waveforms for current sources are drawn in Fig. 5.44 (b).

Fig. 5.44 (b) Fig. 5.44 (c)

Remaining four parameters are evaluated from Fig. 5.44 (c).
VL = VB = VA − (30 ×  1) = 120 Volts
iR = 1 amp, VR = − 30 Volts
iC  = 4 amp in downward direction.
Additional Observation.  After 4 amp source is operative, final conditions (at t tending to

infinity) are as follows.
Inductance carries a total direct current of 9 amp, with VL = 0.
Hence, VB = 0.

iR = 5 amp, VR = − 150 volts
VC = 150 volts, iC = 0

Example 5.50.  The voltage as shown in Fig. 5.45 (a) is applied across − (i) A resistor of 2 ohms
(ii) A capacitor of 2 F.  Find and sketch the current in each case up to 6 seconds.
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Fig. 5.45 (a)

[Bombay University 1998]
Solution.

Fig. 5.45 (b) Current in a Resistor of 2 ohms iR = V (t)/2 amp

Fig. 5.45 (c) Current thro 2-F capacitor, iC = C (dv/dt)

Example 5.51.  Three capacitors 2 μF, 3 μF, and 5 μF are connected in series and charged from
a 900 V d.c. supply.   Find the voltage across condensers.  They are then disconnected from the
supply and reconnected with all the + ve plates connected together and all the −ve plates connected
together.  Find the voltages across the combinations and the charge on each capacitor after
reconnections.  Assume perfect insulation. [Bombay University, 1998]

Solution.  The capacitors are connected in series.  If C is the resultant capacitance.
I/C = I/C1 + I/C2 = I/C3, which gives C = (30/31) μF
V1 = 900 ×  (30/31)/2 = 435.5 volts
V2 = 900 ×  (30/31)/3 = 290.3 volts
V3 = 900 ×  (30/31)/5 = 174.2 volts
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Fig. 5.46

In series connection, charge held by each capacitor is same.  If it is denoted by Q.
Q = 435 ×  2 ×  10−6 = 871 μ coulombs

Three capacitors hold a total charge of (3 ×  871) = 2613 μ coulombs
With parallel connection of these three capacitors, equivalent capacitance, C’ = C1 + C2 + C3 = 10μF
Since, Q’ = C’, 2613 ×  10−6 = 10 ×  10−6 ×  V’
or V’ = 261 volts.
Charge on each capacitor after reconnection is as follows :

Q1’ = C1 V1 = 2 ×  10−6 ×  261 = 522 μ-coulombs
Q2’ = C2 V1 = 3 ×  10−6 ×  261 = 783 μ-coulombs
Q3’ = C3 V2 = 5 ×  10−6 ×  261 = 1305 μ-coulombs

Tutorial Problems No. 5.3

1. For the circuit shown in Fig. 5.47 calculate (i) equivalent capacitance and (ii) voltage drop across
each capacitor.  All capacitance values are in μF.

[(i) 6 μF (ii) VAB = 50 V, VBC = 40 V]
2. In the circuit of Fig. 5.48 find (i) equivalent capacitance (ii) drop across each capacitor and

(iii) charge on each capacitor.  All capacitance values are in μF.
[(i) 1.82 μF (ii) V1 = 50 V; V2 = V3 = 20 V; V4 = 40 V

(iii) Q1 = 200 μC; Q2 = 160 μC; Q3 = 40 μC; Q4 = 200 μC]

                 Fig. 5.47      Fig. 5.48 Fig. 5.49 Fig. 5.50

3. With switch in Fig. 5.49 closed and steady-state conditions established, calculate (i) steady-state
current (ii) voltage and charge across capacitor (iii) what would be the discharge current at the instant
of opening the switch ?

[(i) 1.5 mA (ii) 9V; 270 μC (iii) 1.5 mA]
4. When the circuit of Fig. 5.50 is in steady state, what would be the p.d. across the capacitor ?  Also,

find the discharge current at the instant S is opened.
[8 V; 1.8 A]
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5. Find the time constant of the circuit shown in Fig. 5.51. [200 μS]
6. A capacitor of capacitance 0.01 μF is being charged by 1000 V d.c.

supply through a resistor of 0.01 megaohm.  Determine the voltage
to which the capacitor has been charged when the charging current
has decreased to 90 % of its initial value.  Find also the time taken
for the current to decrease to 90% of its initial value.
                                                                          [100 V, 0.1056 ms]

7. An 8 μF capacitor is being charged by a 400 V supply through 0.1
mega-ohm resistor. How long will it take the capacitor to develop a p.d. of 300 V ?  Also what
fraction of the final energy is stored in the capacitor ? [1.11 Second, 56.3% of full energy]

8. An 10 μF capacitor is charged from a 200 V battery 250 times/second and completely discharged
through a 5 Ω resistor during the interval between charges.  Determine
(a) the power taken from the battery.
(b) the average value of the current in 5 Ω resistor. [(a) 50 W (b) 0.5 A]

9. When a capacitor, charged to a p.d. of 400 V, is connected to a voltmeter having a resistance of
25 MΩ, the voltmeter reading is observed to have fallen to 50 V at the end of an interval of 2 minutes.
Find the capacitance of the capacitor. [2.31 μF] (App. Elect. London Univ.)

10. A capacitor and a resistor are connected in series with a d.c. source of V volts. Derive an expression
for the voltage across the capacitor after ‘t’ seconds during discharging.

(Gujrat University, Summer 2003)
11. Derive an expression for the equivalent capacitance of a group of capacitors when they are connected

(i) in parallel  (ii) in series. (Gujrat University, Summer  2003)
12. The total capacitance of two capacitors is 0.03 μF when joined in series and 0.16 μF when connected

in parallel. Calculate the capacitance of each capacitor. (Gujrat University, Summer  2003)
13. In a capacitor with two plates separated by an insulator 3mm thick and of relative permittivity of

4, the distance between the plates is increased to allow the insertion of a second insulator 5mm
thick and relative permittivity E. If the capacitance so formed is one third of the original capacitance,
find E. (V.TU., Belgaum Karnataka University, February 2002)

14. Derive an expression for the capacitance of a parallel plate capacitor.
(V.TU., Belgaum Karnataka University, Summer 2002)

15. Three capacitors A, B and C are charged as follows
A = 10μF, 100 V      B = 15μF, 150 V    C = 25μF, 200 V
They are connected in parallel with terminals of like polarities together. Find the voltage across
the combination.   (V.TU., Belgaum  Karnataka University, Summer 2002)

16. Prove that average power consumed by a pure capacitance is zero.
(V.TU., Belgaum Karnataka University, Summer 2002)

17. Current drawn by a pure capacitor of 20μF is 1.382A from 220V AC supply. What is the supply
frequency? (V.TU., Belgaum Karnataka University, Summer 2003)

18. Find the equivalent capacitance between the points A and B of the network shown in fig. 1.
(V.TU., Belgaum Karnataka University, Summer 2003)

Fig. 5.52
19. Three capacitors of 1, 2 and 3 micro farads are connected in series across a supply voltage of 100V.

Find the equivalent capacitance of the combination and energy stored in each capacitor.
(Mumbai University 2003) (V.T.U. Belgaum Karnataka University, Wimter 2003)

20. Consider a parallel plate capacitor, the space between which is filled by two dielectric of thickness
d1 and d2 with relative permittivities ∈1 and ∈2 respectively. Derive an expression for the capacitance
between the plates. (V.T.U. Belgaum Karnataka University, Wimter 2004)

Fig. 5.51
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21. A capacitor consists of two plates of area 0.16m2 spaced 6mm apart. This space is filled with a
layer of 1mm thick paper of relative permittivity 2, and remaining space with glass of relative
permittivity 5. A dc voltage of 10kV is applied between the plates. Determine the electric field
strength in each dielectric.         (V.T.U. Belgaum Karnataka University, Wimter2004)

22. In a give R-L circuit, R = 35Ω and L = 0.1H. Find (i) current through the circuit (ii) power factor
if a 50 Hz frequency, voltage V = 220∠30° is applied across the circuit.

(RGPV Bhopal 2001)
23. Three voltage represented by e1 = 20 sin ω t, e2 = 30 sin (ω t = 45°) and e3 = sin (ω t + 30°)

are connected in series and then connected to a load of impedance (2 + j 3) Ω. Find the resultant
current and power factor of the circuit. Draw the phasor diagram.

(Mumbai University, 2002) (RGPV Bhopal 2001)

OBJECTIVE  TESTS – 5

1. A capacitor consists of two
(a) insulation separated by a dielectric
(b) conductors separated by an insulator
(c) ceramic plates and one mica disc
(d) silver-coated insulators

2. The capacitance of a capacitor is NOT
influenced by
(a) plate thickness
(b) plate area
(c) plate separation
(d) nature of the dielectric

3. A capacitor that stores a charge of 0.5 C at
10 volts has a capacitance of .....farad.
(a) 5 (b) 20
(c) 10 (d) 0.05

4. If  dielectric slab of thickness 5 mm and
ε r = 6 is inserted between the plates of an air
capacitor with plate separation of 8 mm, its
capacitance is
(a) decreased (b) almost doubled
(c) almost halved (d)unaffected

5. For the circuit shown in the given figure,
the current through L and the voltage across
C2 are respectively

(a) zero and RI
(b) I and zero
(c) zero and zero
(d) I and RI (ESE 2001)

6. A parallel plate capacitor has an electrode
area of 100 mm2, with a spacing of 0.1 mm
between the electrodes. The dielectric
between the plates is air with a permittivity
of 8.85 ×  10–12 F/m. The charge on the
capacitor is 100 V. the stored energy in the
capacitor is
(a) 8.85 pJ (b) 440 pJ
(c) 22.1 nJ (d) 44.3 nJ

(GATE 2003)
7. A composite parallel plate capacitor is made

up of two different dielectric materials with
different thicknesses (t1 and t2) as shown in
Fig.5.54. The two different dielectric
materials are separates by a conducting foil
F. The voltage of the conducting foil is

(a) 52 V (b) 60 V
(c) 67 V (d) 33 V

(GATE 2003)

Fig. 5.54

Fig. 5.53
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