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4.1. Static Electricity

In the preceding chapters, we concerned ourselves exclusively with electric current i.e. electric-
ity in motion.  Now, we will discuss the behaviour of static electricity and the laws governing it.  In
fact, electrostatics is that branch of science which deals with the phenomena associated with electric-
ity at rest.

It has been already discussed that generally an atom is electrically neutral i.e. in a normal atom
the aggregate of positive charge of protons is exactly equal to the aggregate of negative charge of the
electrons.

If, somehow, some electrons are removed from the atoms of a body, then it is left with a
preponderance of positive charge.  It is then said to be positively-charged.  If, on the other hand, some
electrons are added to it, negative charge out-balances the positive charge and the body is said to be
negatively charged.

In brief, we can say that positive electrification of a body results from a deficiency of the electrons
whereas negative electrification results from an excess of electrons.

The total deficiency or excess of electrons in a body is known as its charge.

4.2. Absolute and Relative Permittivity of a Medium
While discussing electrostatic phenomenon, a certain property of the

medium called its permittivity plays an important role.  Every medium is
supposed to possess two permittivities :

(i) absolute permittivity (ε) and (ii) relative permittivity (εr).
For measuring relative permittivity, vacuum or free space is chosen as

the reference medium.  It has an absolute permittivity of 8.854 ×  10−12 F/m
Absolute permittivity ε0 = 8.854 ×  10−12 F/m
Relative permittivity, εr = 1
Being a ratio of two similar quantities, εr has no units.
Now, take any other medium.  If its relative permittivity, as compared to vacuum is εr, then its

absolute permittivity is ε = ε0 εr F/m
If, for example, relative permittivity of mica is 5, then, its absolute permittivity is

ε = ε0 εr = 8.854 ×  10−12 ×  5 = 44.27 ×  10−12 F/m

4.3. Laws of Electrostatics
First Law.  Like charges of electricity repel each other, whereas unlike charges attract each other.
Second Law.   According to this law, the force exerted between two point charges (i) is directly

proportional to the product of their strengths (ii) is inversely proportional to the square of the distance
between them.

This law is known as Coulomb’s Law and can be expressed mathematically as :

F ∝ 1 2 1 2
2 2or

Q Q Q Q
F k

d d
=

In vector form, the Coulomb’s law can be written as 
^1 2
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1 2
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Q Q
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Charles Augustin de
Coulomb*

 * Coulomb is better known for his law which states that the force between two point charges is propor-
tional to each charge and inversely proportional to the square of the distance between them.
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where ^
d  is the unit vector i.e. a vector of unit length in the

direction of distance d, i.e. d = ^
d
d

 

  (where d
→

 is the vector notation

for d, which is a scalar notation).
Therefore, explicit forms of this law are :

21F
→

=
^1 2 1 2
12 122 3

12 12

Q Q Q Qk d k d
d d

→
=

where 21F
→

 is the force on Q2 due to Q1 and 
^
12d  is the unit vector

in direction from Q1 to Q2

and 12F
→ =

^1 2 1 221 212 2
21 21

Q Q Q Q
k d k d

d d

→
=  where F12 is the force on Q1 due to Q2 and 

21d
→  is the unit

vector in the direction from Q2 to Q1.
where k is the constant of proportionality, whose value depends on the system of units employed.  In
S.I. system, as well as M.K.S.A. system k = 1/4πε.  Hence, the above equation becomes.

F = 1 2 1 2
2 2

04 4 r

Q Q Q Q
d d

=
πε πε ε

If Q1 and Q2 are in colomb, d in metre and  ε in fard/metre, then F is in newtons

 
9 9

12
0

1 1Now 8.9878 10 9 10 (approx.)
4 4 8.854 10      
     

Hence, Coulomb’s Law can be written as

F = 9 1 2
29 10

r

Q Q
d

×
ε

—in a medium

=
9 1 2

29 10
Q Q
d

× —in air or vacuum ...(i)

If in Eq. (i) above
Q1 = Q2 = Q (say), d = 1 metre; F = 9 ×  109 N

then Q2 = 1 or Q = ± 1 coulomb
Hence, one coulomb of charge may be defined as

that charge (or quantity of electricity) which when
placed in air (strictly vacuum) from an equal and
similar charge repels it with a force of 9 ××××× 109 N.

Although coulomb is found to be a unit of conve-
nient size in dealing with electric current, yet, from
the standpoint of electrostatics, it is an enormous unit.
Hence, its submultiples like micro-coulomb (μ C) and
micro-microcoulomb (μ μC) are generally used.

1 μ C =10−6 C; 1 μ μ C = 10−12 C
It may be noted here that relative permittivity of air is one, of water 81, of paper between 2 and

3, of glass between 5 and 10 and of mica between 2.5 and 6.
Example 4.1.  Calculate the electrostatic force of repulsion between two α-particles when at a

distance of 10−13 m from each other.  Charge of an α-particles is 3.2 ×  10−12 C.  If mass of each
particle is 6.68 ×  10−27 N-m2/kg2.

Solution.  Here Q1 = Q2 = 3.2 ×  10−19 C, d = 10−13 m

F =
19 19

9
13 2

3.2 10 3.2 109 10
(10 )

− −

−
× × ×× × = . −× 29 2 10 N

Fig. 4.1

Unlike charges attract and like charges repel
each other
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The force of gravitational attraction between the two particles is given by

F =
11 27 2

1 2
2 13 2

6.67 10 (6.68 10 )
(10 )

m m
G

d

− −

−
× × ×= = . −× 372 97 10 N

Obviously, this force is negligible as compared to the electrostatic force between the two
particles.

Example 4.2.  Calculate the distance of separation between two electrons (in vacuum) for which
the electric force between them is equal to the gravitation force on one of them at the earth surface.

mass of electron = 9.1 ×  11−31 kg, charge of electron = 1.6 ×  10−19 C.
Solution.  Gravitational force on one electron.

= mg newton = 9.1 ×  10−31 ×  9.81 N
Electrostatic force between the electrons

=
9 19 22

9
2 2

9 10 (1.6 10 )9 10 Q N
d d

−× × ×× =

Equating the two forces, we have
9 38

2
9 10 2.56 10

d

−× × ×
= 9.1 ×  10−31 ×  9.81 ∴ d = 5.08 m

Example 4.3.  (a)  Three identical point charges, each QΩ coulombs, are placed at the vertices
of an equilateral triangle 10 cm apart.  Calculate the force on each charge.

(b) Two charges Q coulomb each are placed at two opposite corners of a square.  What addi-
tional charge “q” placed at each of the other two corners will reduce the resultant electric force on
each of the charges Q to zero ?

Solution.  (a)  The equilateral triangle with its three charges is shown in Fig. 4.2 (a).  Consider
the charge Q respectively.  These forces are equal to each other and each is

F =
2

9 11 2
29 10 9 10 newton

0.1
Q Q× = ×

Fig. 4.2

Since the angle between these two equal forces is 60º, their resultant is
= 2 ×  F ×  cos 60°/2 = 3 F =  = 11 29 × 10 × 3 Q Newton

The force experienced by other charges is also the same.
(b) The various charges are shown in Fig. 4.2 (b).  The force experienced by the charge Q at

point C due to the charge Q at point A acts along ACM and is

=
2

9 9 2 2
29 10 4.5 10 / newton

( 2 )
Q Q d

d
× = × ...(i)

where d is the side of the square in metres.
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If the charges q are negative, they will exert attractive forces on the charge Q at point C along CB
and CD respectively.  Each force is

= 9
29 10 newtonQq

d
− ×

Since these two forces are at right angles to each other, their resultant is

= 9
22 9 10 qQ

d
− × ×

If net force on charge Q at point C is to be zero, then (i) must equal (ii),

∴
2

9
24.5 10 Q

d
× =

9
29 10 2 qQ q

d
− × ∴ = − /2 2 coulombQ

Example 4.4.  The small identical conducting spheres have charges of 2.0 ×  10−9 C and − 0.5 ×
10−9 respectively.  When they are placed 4 cm apart, what is the force between them ?  If they are
brought into contact and then separated by 4 cm, what is the force between them ?

(Electromagnetic Theory, A.M.I.E. Sec B,)
Solution.  F = 9 ×  10−9 Q1 Q2/d

2 = 9 ×  10−9 ×  (− 0.5 ×  10−9)/0.042 = − 56.25 ×  10−7 N.  When two
identical spheres are brought into contact with each other and then separated, each gets half of the
total charge.   Hence,

Q1 = Q2 = [2 ×  10−9 + (− 0.5 ×  10−9)/2] = 0.75 ×  10−9 C
When they are separated by 4 cm,

F = 9 ×  10−9 ×  (0.75 ×  10−9)2/0.042 = 0.316 ×××××  10−−−−−5 N
Example 4.5.  Determine resultant force on 3 μC charge due to − 4μC and 10 nC charges.  All

these three point charges are placed on the vertices of equilateral triangle ABC of side 50 cm.
[Bombay University, 2001]

Fig. 4.3 (a) Fig. 4.3 (b)

Solution. F2 =
6 9

1 2
2 12

0

3 10 10 10
4 4 8.854 10 0.50 0.50

Q Q

d

  

 
    

       
= 1.08 ×  10−3 Newton, in the direction shown

Similarly, F1 = 0.432 Newton, in the direction shown.
Resultant of F1 and F2 has to be found out.
Example 4.6.  A capacitor is composed of 2 plates separated by a sheet of insulating material

3 mm thick and of relative permitivity 4.  The distance between the plates is increased to allow the
insertion of a second sheet of 5 mm thick and of relative permitivity ε r.  If the equivalent capacitance
is one third of the original capacitance.  Find the value of εr. [Bombay University, 2001]

Solution. 0
1

r A
C

d
ε ε

= k(4/3), where k = ε0A ×  10+ 3

The composite capacitor [with one dielectric of εr1 = 4 and other dielectric of εr2 as relative
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permitivity has a capacitance of C/3.  Two capacitors are effectively in series.  Let the second dielec-
tric contribute a capacitor of C2.

K . (4/9) = 1 2 2

1 2 2

. (4/3) .
. (4/3)

C C K C
C C K C

=
+ +

This gives C2 = 2/3 K

(2/3) K = 0 2
35 10

r A
−

ε ε
×

Er2 = 10/3 . K 1/e0 A ×  10−3

= 10/3 e0 A ×  103 1/e0 A ×  10−3

= 10/3 = 3.33

4.4. Electric Field
It is found that in the medium around a charge a force acts on a positive or negative charge when

placed in that medium.  If the charge is sufficiently large, then it may create such a huge stress as to
cause the electrical rupture of the medium, followed by the passage of an arc discharge.

Fig. 4.4 (a) Fig. 4.4 (b)

The region in which the stress exists or in which electric forces act, is called an electric field or
electrostatic field.

The stress is represented by imaginary lines of forces.  The direction of the lines of force at any
point is the direction along which a unit positive charge placed at that point would move if free to do
so.  It was suggested by Faraday that the electric field should be imagined to be divided into tubes of
force containing a fixed number of lines of force.  He assumed these tubes to the elastic and having
the property of contracting longitudinally the repelling laterally.  With the help of these properties, it
becomes easy to explain (i) why unlike charges attract each other and try to come nearer to each other
and (ii) why like charges repel each other [Fig. 4.4 (a)].

However, it is more common to use the term lines of force.  These lines are supposed to emanate
from a positive charge and end on a negative charge [Fig. 4.4 (b)].  These lines always leave or enter
a conducting surface normally.

4.5. Electrostatic Induction
It is found that when an uncharged body is brought near a charged body, it acquires some charge.

This phenomenon of an uncharged body getting charged merely by the nearness of a charged body is
known as induction.  In Fig. 4.5, a positively-charged body A is brought close to a perfectly-insulated
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uncharged body B.  It is found that the end of B nearer to A gets negatively charged whereas further
end becomes positively charged.  The negative and positive charges of B are known as induced
charges.  The negative charge of B is called ‘bound’ charge because it must remain on B so long as
positive charge of A remains there.  However, the positive charge on the farther end of B is called free
charge.  In Fig. 4.6, the body B has been earthed by a wire.  The positive charge flows to earth leaving
negative charge behind.  If next A is removed, then this negative charge will also go to earth, leaving
B uncharged.  It is found that :

(i) a positive charge induces a negative charge and vice-versa.
(ii) each of the induced charges is equal to the inducing charge.

Fig. 4.5 Fig. 4.6

4.6. Electric Flux and Faraday
         Tubes

Consider a small closed curve in an elec-
tric field
(Fig. 4.7).  If
we draw
lines of force
through each
point of this
closed curve,
then we get a
tube as
shown in the
figure.  It is
called the

tube of the electric flux.  It may be defined as
the region of space enclosed within the tubu-
lar surface formed by drawing lines of force
through every point of a small closed curve
in the electric field.

Since lines of force end on conductors,
the two ends of a flux tube will consist of small
area ds1 and ds2 on the conductor surfaces.  If
surface charge densities over these areas are
σ1 and − σ2, then charges at the two ends of
the flux tube will be σ1 ds1 and − σ2 ds2.  These
charges are assumed to be always equal but
opposite to each other.  The strength of a flux
tube is represented by the charge at its ends.

A unit tube of flux is one in which the

Fig. 4.7

Metal
dome

The Van de Graff generator is able to produce very high
voltages, for example, up to 50 000 volts. When someone
touches the dome of the generator, it will cause hair to
stand on end (since like charges repel). Touching the VDG
is not dangerous since the current is very small.
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end charge is one unit of charge.
In the S.I. system of units, one such tube of flux is supposed to start from a positive charge of one

coulomb and terminate on a negative charge of the same amount.
A unit tube of flux is known as Faraday tube.  If the charge on a conductor is ±  Q coulombs, then

the number of Faraday tubes starting or terminating on it also Q.
The number of Faraday tubes of flux passing through a surface in an electric field is called the

electric flux (or dielectric flux) through that surface.  Electric flux is represented by the symbol ψ.
Since electric flux is numerically equal to the charge, it is measured in coulombs.

Hence, ψ = Q coulombs
Note.  It may also be noted that ‘tubes of flux’ passing per unit area through a medium are also supposed

to measure the ‘electric displacement’ of that dielectric medium.  In that case, they are referred to as lines of
displacement and are equal to ε  times the lines of force (Art. 4.8).  It is important to differentiate between the
‘tubes of flux’ and ‘lines of force’ and to remember that if Q is the charge, then

tubes of flux = Q and lines of force = Q/εεεεε

4.7. Field Strength or Field Intensity or Electric Intensity (E)
Electric intensity at any point within an electric field may be defined in either of the following

three ways :
(a) It is given by the force experienced by a unit positive charge placed at that point.  Its direc-

tion is the direction along which the force acts.
Obviously, the unit of E is newton/coulomb (N/C).
For example, if a charge of Q coulombs placed at a particular point P within an electric field

instances a force of F newton, then electric field at that point is given by
E = F/Q N/C

The value of E within the field due to a point charge can be found with help of Coulomb’s laws.
Suppose it is required to find the electric field at a point A situated at a distance of d metres from a
charge of Q coulombs.  Imagine a positive charge of one coulomb placed at that point (Fig. 4.8).  The
force experienced by this charge is

F =
^

2 2
0 0

1 1or
4 4

PA
r r PA

Q QN F d
d d

→× ×=
π ε ε π ε ε

∴ E = 2
0

1 N/C
4 r PA

Q
d

×
π ε ε

= 9
29 10 N/C

r PA

Q
d

×
ε

or in vector notation,

( )E d
→

=
^9

29 10
r

Q d
d

×
ε

where ( )E d
→

 denotes E
→

 as a function of d

= 2
04

Q
dπ ε

N/C

= 9
29 10 N/CQ

d
×

(b) Electric intensity at a point may be defined as equal to the lines of force passing normally
through a unit cross-section at that point.  Suppose, there is a charge of Q coulombs.   The number of

Fig. 4.8
in a medium

⎤
⎥
⎥
⎥
⎥
⎥⎦

in air

⎤
⎥
⎥
⎥
⎥⎦
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lines of force produced by it is Q/ε .  If these lines fall normally on an area of A m2 surrounding the
point, then electric intensity at that point is

E =
/Q Q
A A

ε =
ε

Now Q/A = D —the flux density over the area

∴ E =
0 r

D D=
ε ε ε —in a medium

=
0

D
ε —in air

The unit of E is volt/metre.
(c) Electric intensity at any point in an electric field is equal to the potential gradient at that

point.
In other words, E is equal to the rate of fall of potential in the direction of the lines of force.

∴ E =
dV

dx
−

Obviously, the unit of E is volt/metre.
It may be noted that E and D are vector quantities having magnitude and direction.

∴ In vector notation, D
→

= 0 E
→

ε

Example 4.7.  Point charges in air are located as follows :
+ 5 ×  10−8 C at (0, 0) metres, + 4 ×  10−8 C at (3, 0) metres and − 6 ×  10−8 C at (0, 4) metres.  Find

electric field intensity at (3, 4) metres.
Solution.  Electric intensity at point D (3, 4) due to positive charge at point A is
E1 = 9 ×  109 Q/d2 = 9 ×  109 ×  5 ×  10−8/52 = 18 V/m
As shown in Fig. 4.9, it acts along AD.
Similarly, electric intensity at point D due to posi-

tive charge at point B is E2 = 9 ×  109 ×  4 ×  10−8/42 = 22.5
V/m.  It acts along BD.

E1 = 9 ×  109 ×  6 ×  10−8/32 = 60 V/m.  It acts along DC.
The resultant intensity may be found by resolving E1, E2

and E3 into their X-and Y-components.  Now, tan θ  = 4/3;
θ = 53°8′ .

X-component = E1 cos θ − E2 = 18 cos 53°8′ − 60
= − 49.2

Y-component = E1 sin θ + E2 = 18 sin 53°8′  + 22.5 = 36.9

∴ E = 2 2( 49.2) 36.9 61.5 V/m.− + =
It acts along DE such that tan φ = 36.9/49.2 = 0.75.

 Hence φ = 36.9°.
Example 4.8.  An electron has a velocity of 1.5 ×  107 m/s at right angles to the uniform electric

field between two parallel deflecting plates of a cathode-ray tube.  If the plates are 2.5 cm long and
spaced 0.9 cm apart and p.d. between the plates is 75 V, calculate how far the electron is deflected
sideways during its movement through the electric field.  Assume electronic charge to be 1.6 ×  10−19

coulomb and electronic mass to be 9.1 ×  10−31 kg.

Fig. 4.9



198 Electrical Technology

Solution.  The movement of the electron
through the electric field is shown in Fig. 4.10.
Electric intensity between the plates is E =
dV/dx = 75/0.009 = 8,333 V/m.

Force on the electron is F = QE
= 8,333  ×  1.6 ×  10−19 = 1.33 ×  10−15 N.

Since the deflection x is small as compared
to the length of the plates, time taken by the
electron to travel through the electric field is
= 0.025/1.5 ×  107 = 1.667 ×  10−9 s

Now, force = mass ×  acceleration
∴ Transverse acceleration is

= 
15

15 2
31

1.33 10 1.44 10 m/s
9.1 10

−

−
× = ×
×

Final transverse velocity of the electron = acceleration ×  time
        = 1.44 × 10−15 ×  1.667 ×  10−9= 2.4 ×  106 m/s

∴  sideways or transverse movement of the electron is
x = (average velocity) ×  time

= 1
2

×  2.4 ×  106 ×  1.667 × 10−9 = 2 mm (approx.)*

4.8. Electric Flux Density or Electric Displacement
It is given by the normal flux per unit area.
If a flux of Ψ coulombs passes normally through an area of A m2, then flux density is

D = A
Ψ  C/m2

It is related to electric field intensity by the relation
D = ε0εr E ...in a medium

= ε0 E ...in free space
In other words, the product of electric intensity E at any point within a dielectric medium and the

absolute permittivity ε  (= ε0, ε r) at the same point is called the displacement at that point.
Like electric intensity E, electric displacement D** is also a vector quantity (see 4.7) whose

direction at every point is the same as that of E but whose magnitude is ε0 εr times E.  As E is
represented by lines of force, similarly D may also be represented by lines called lines of electric

* The above result could be found by using the general formula

x = ( ) ( ) ( )21 metres
2

e V l
m d v

where e/m = ratio of the charge and mass of the electron
V = p.d. between plates in volts; d = separation of the plates in metres
l = length of the plates in metres; v = axial velocity of the electron in m/s.

** A more general definition of displacement D is that D = e0 er E + P where P is the polarisation of the
dielectric and is equal to the dipole moment per unit volume.
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Fig. 4.10
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displacement.  The tangent to these lines at any point gives the direction of D at that point and the
number of lines per unit area perpendicular to their direction is numerically equal to the electric
displacement at that point.  Hence, the number of lines of electric displacement per unit area (D) is ε0,
εr times the number of lines of force per unit area at that point.

It should be noted that whereas the value of E depends on the permittivity of the surrounding
medium, that of D is independent of it.

One useful property of D is that its surface integral over any closed surface equals the enclosed
charge (Art. 4.9).

Let us find the value of D at a point distant r metres from a point charge of Q coulombs.  Imagine
a sphere of radius r metres surrounding the charge.  Total flux = Q coulombs and it falls normally on
a surface area of 4 π r2 metres.  Hence, electric flux density.

D = 2 24 4
Q

r r
Ψ =
π π

coulomb/metre2 or  24
QD r

r
=

π

    = r (in vector notation)

4.9. Gauss* Law
Consider a point charge Q lying at the centre of a sphere of radius r which surrounds it com-

pletely [Fig. 4.11 (a)].  The total number of tubes of flux originating from the charge is Q (but number
of lines of force is Q/ε0) and are normal to the surface of the sphere.  The electric field E which equals
Q/4 π ε0 r

2 is also normal to the surface.  As said earlier, total number of lines of force passing
perpendicularly through the whole surface of the sphere is

= E ×  Area = 2
04

Q
rπε

 × 4 π r2 = 
0

Q
ε

Fig. 4.11

Now, suppose we draw another sphere surrounding the charge [Fig. 4.11 (b)] but whose centre
does not lie at the charge but elsewhere.  In this case also, the number of tubes of flux emanating from
the charge is Q and lines of force is Q.ε0 though they are not normal to the surface.  These can,
however, be split up into cos θ components and sin θ components.  If we add up sin θ components all
over the surface, they will be equal to zero .  But if add up cos θ components over the whole surface
of the sphere, the normal flux will again come out to be Q (or lines of force will come out to be Q/ε0).
Hence, it shows that irrespective of where the charge Q is placed within a closed surface completely
surrounding it, the total normal flux is Q and the total number of lines of force passing out normally
is Q/ε0.

In fact, as shown in Fig. 4.12, if there are placed charges of value Q1, Q2, − Q3 inside a closed
surface, the total i.e. net charge enclosed by the surface is (Q1 + Q2 − Q3)/ε0 through the closed
surface.

* After the German mathematician and astronomer Karel Freidrich Gauss (1777-1855).
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This is the meaning of Gauss’s law which may be stated thus : the surface integral of the normal
component of the electric intensity E over a closed surface is equal to 1/ε0 times the total charge
inside it.

Mathematically, ∫ Ends = Q/ε0 (where the circle on the integral sign indicates that the surface of
integration is a closed surface).

or 0n dsε ε∫ = Q, i.e. nD ds∫  = Q [∴  Dn = ε0En]

or 0 cosE dsε θ∫ = Q, i.e. cosD ds Qθ =∫ 
or

0 cosdsEε θ∫ = Q, i.e., cosD ds Qθ =∫ 
when E and D are not normal to the surface but make an angle θ with the normal (perpendicular)

to the surface as shown in Fig. 4.13.
Proof.  In Fig. 4.13, let a surface S completely surround a quantity of electricity or charge Q.

Consider a small surface area ds subtending a small solid angle dω at point charge Q.  The field

intensity at ds is E = 
2

04
Q

dπ ε
where d is the distance between Q and ds.

In vector notation, 0 . . .E ds Q i e D ds
→ → → →

ε =∫ ∫  = Q = ¶v ρ dv (where ρ  is the volume density of

charge in the volume enclosed by closed surface S).

Thus .s D ds
→ →

∫ = ¶v ρ  dv is the vector statement of Gauss Law* and its alternative statement is

D∇
   

 = ρ

Fig. 4.12 Fig. 4.13

The normal component of the intensity En = E cos θ
∴No. of lines of force passing normally through the area ds is

= En.ds = E ds cos θ = .E ds
     

 in vector notation

Now ds cos θ = ds′ ∴ E.ds′  = 2
04

Q
dπε

 .ds′

Now ds′ /d2 = d ω

Hence, the number of lines of force passing normally is = 
04

Q
πε  dω

* This results from the application of the Divergence theorem, also called the Gauss’ Theorem, viz.,

.Dd D d ss ∇ υ =∫ ∫  
      

where vector operator called ‘del’ is defined as

x y z
x y z

∂ ∂ ∂∇ = + +
∂ ∂ ∂
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Total number of lines of force over the whole surface

=
0 0 0

4
4 4s

Q Q Qdω = × π =
πε π ε ε∫

where sign “ denotes integration around the whole of the closed surface i.e. surface integral.
If the surface passes through a material medium, then the above law can be generalized to include

the following :
the surface integral of the normal component of D over a closed surface equals the free

charge enclosed by the surface.

As before D = 24
Q

dπ ε
.  The normal component Dn = D cos θ = 2 cos

4
Q

d
× θ

π

Hence, the normal electric flux from area ds is

d ψ = 2 2. cos . .
4 4n

Q QD ds ds ds
d d

× = θ = ′
π π

∴ d ψ = 24 4
Q Qds d

d
⎛ ⎞′ = ω⎜ ⎟π π⎝ ⎠

or ψ = . 4
4 4 4
Q Q Qd d Qω = ω = × π =
π π π∫ ∫ ∴ Ψ = Q

which proves the statement made above.
Hence, we may state Gauss’s law in two slightly different ways.

3
.nE ds∫ = 0 03 3

. cos . / or .nE ds Q E ds Qθ = ε ε =∫ ∫  
and

3
.nD ds∫ =

3
.nD ds Q=∫ 

(vector statement is given above)

4.10. The Equations of Poisson and Laplace
These equations are useful in the solution of many

problems concerning electrostatics especially the problem
of space charge* present in an electronic valve.  The two
equations can be derived by applying Gauss’s theorem.
Consider the electric field set up between two charged
plates P and Q [Fig. 4.14 (a)].  Suppose there is some
electric charge present in the space between the two plates.
It is, generally, known as the space charge.  Let the space
charge density be ρ  coulomb/metre3.  It will be assumed
that the space charge density varies from one point of space
to the another but is uniform throughout any thin layer
taken parallel to the plates P and Q.  If X-axis is taken
perpendicular to the plates, then ρ  is assumed to depend on the value of x.  It will be seen from Fig.
4.14 (a) that the value of electric intensity E increases with x because of the space charge.

Now, consider a thin volume element of cross-section A and thickness Δ x as shown in Fig. 4.14 (b).
The values of electric intensity at the two opposite faces of this element are E and (E + Δ E). If
dE/dx represents the rate of increases of electric intensity with distance, then

Δ E = E Ex E E E x
x x

∂ ∂× Δ ∴ + Δ = + × Δ
∂ ∂

The surface integral of electric intensity over the right-hand face of this element is

Fig. 4.14

* Such a space charge exists in the space between the cathode and anode of a vacuum tube.
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 = .EE x A
x

∂⎛ ⎞+ Δ⎜ ⎟∂⎝ ⎠
The surface integral over the left-hand face of the element is = − E ×  A
The negative sign represents the fact that E is directed inwards over this face.
The surface integral over the entire surface, i.e., the closed surface of the element is

= . . . .E EE x A E A A x
x x

∂ ∂⎛ ⎞+ Δ − × = Δ⎜ ⎟∂ ∂⎝ ⎠
  From symmetry it is evident that along with y and

z there is no field.
Now, according to Gauss’s theorem (Art. 4.9), the surface integral of electric intensity over a

closed surface is equal to 1/ε0 time the charge within that surface.
Volume of the element, dV = A × Δ x; charge = ρ  A . Δ x

∴ A . Δ x . E
x

∂
∂ =

0 0

1. . or EA x
x

∂ ρρ Δ =
ε ∂ ε

Now E = ( ) 2 2

2 2
0

V E V VdV
x x x dx x x

∂ ∂ ∂ ∂ ρ∂− ∴ = − = − ∴ = −
∂ ∂ ∂ ε∂ ∂

It is known as Poisson’s equation in one dimension where potential varies with x.

When V varies with x, y and z, then 
2 2 2

2
2 2 2

0

V V V V
x y z

∂ ∂ ∂ ρ+ + = − = ∇
ε∂ ∂ ∂

 in vector notation.

If, as a special case, where space charge density is zero, then obviously,
∂2 V/∂ x2 = 0

In general, we have 
2 2 2

2 2 2
V V V
x y z

∂ ∂ ∂+ +
∂ ∂ ∂

 = 0 or ∇2 V = 0 in vector notation where ∇2 is

defined (in cartesian co-ordinates) as the operation

∇2 =
2 2 2

2 2 2
V V V
x y z

∂ ∂ ∂+ +
∂ ∂ ∂

It is known as Laplace’s equation.

4.11. Electric Potential and Energy

We know that a body raised above the ground level has a certain amount of mechanical potential
energy which, by definition, is given by the amount of work done in raising it to that height.  If, for
example, a body of 5 kg is raised against gravity through 10
m, then the potential energy of the body is 5 ×  10 = 50 m-kg.
wt. = 50 ×  9.8 = 490 joules.  The body falls because there is
attraction due to gravity and always proceeds from a place of
higher potential energy to one of lower potential energy.  So,
we speak of gravitational potential energy or briefly ‘poten-
tial’ at different points in the earth’s gravitational field.

Now, consider an electric field.  Imagine an isolated
positive charge Q placed in air (Fig. 4.15).  Like earth’s
gravitational field, it has its own electrostatic field which
theoretically extends upto infinity.  If the charge X is very far
away from Q, say, at infinity, then force on it is practically

zero.  As X  is
brought nearer to
Q, a force of
repulsion acts on it (as similar charges repel each other),
hence work or energy is required to bring it to a point like A
in the electric field.  Hence, when at point A, charge X has

Fig. 4.15

Using Van De Graff Generator, artificial
lightning can be created in the
laboratory, in a miature scale.



Electrostatics 203

some amount of electric potential energy.  Similar other points in the field will also have some potential
energy.  In the gravitational field, usually ‘sea level’ is chosen as the place of ‘zero’ potential.  In
electric field infinity is chosen as the theoretical place of ‘zero’ potential although, in practice, earth
is chosen as ‘zero’ potential, because earth is such a large conductor that its potential remains practically
constant although it keeps on losing and gaining electric charge every day.

4.12. Potential and Potential Difference
As explained above, the force acting on a charge at infinity is zero, hence ‘infinity’ is chosen as

the theoretical place of zero electric potential.  Therefore, potential at any point in an electric field
may be defined as

numerically equal to the work done in bringing a positive charge of one coulomb from infin-
ity to that point against the electric field.

The unit of this potential will depend on the unit of charge taken and the work done.
If, in shifting one coulomb from infinity to a certain point in the electric field, the work done is

one joule, then potential of that ponit is one volt.
Obviously, potential is work per unit charge,

∴ 1 volt = 1 joule
1 coulomb

Similarly, potential difference (p.d.) of one volt exists between two points if one joule of work is
done in shifting a charge of one coulomb from one point to the other.

4.13. Potential at a Point
Consider a positive point charge of Q coulombs placed in air.

At a point x metres from it, the force on one coulomb positive
charge is Q/4 πε0 x

2 (Fig. 4.16).  Suppose, this one coulomb charge
is moved towards Q through a small distance dx.  Then, work done is

dW = 2
0

( )
4

Q dx
r

× −
πε

The negative sign is taken because dx is considered along the negative direction of x.
The total work done in bringing this coulomb of positive charge from infinity to any point D

which is d metres from Q is given by

W = 2 2
00

.
44

x d
d

x

Qdx dxQ
x x

=

∞
= ∞

− = −
πεπε∫ ∫

= ( )
0 0 0

1 1 1 joules
4 4 4

dQ Q Q
x d d∞

⎡ ⎤− − = − − − − =⎢ ⎥πε πε ∞ πε⎣ ⎦
By definition, this work in joules in numerically equal to the potential of that point in volts.

∴ V = 9

0
9 10 volt

4
Q Q

d d
= ×

πε —in air

and V =
9

0
9 10 volt

4 r r

Q Q
d d

= ×
πε ε ε —in medium

We find that as d increases, V decreases till it becomes zero at infinity.

4.14. Potential of a Charged Conducting Sphere
The above formula V = Q/4πε0 ε r d applies only to a charge concentrated at a point.  The problem

Fig. 4.16
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of finding potential at a point outside a charged sphere sounds
difficult, because the charge on the sphere is distributed over its
entire surface and so, is not concentrated at a point.  But the problem
is easily solved by nothing that the lines of force of a charged sphere,
like A in by noting that the lines of force of a charged sphere, like
A in Fig. 4.17 spread out normally from its surface.  If produced
backwards, they meet at the centre of A.  Hence for finding the
potentials at points outside the sphere, we can imagine the charge
on the sphere as concentrated at its centre O.  If r is the radius of
sphere in metres and Q its charge in coulomb then, potential of its
surface is Q/4π  ε0 r volt and electric intensity is
Q/4πε0 r

2.  At any other point ‘d’ metres from the centre of the
sphere, the corresponding values are Q/4π ε0 d and Q/4πε0 d

2

respectively with d > r as shown in Fig. 4.18 though its starting
point is coincident with that of r.  The variations of the potential and electric intensity with distance
for a charged sphere are shown in Fig. 4.18.

4.15.  Equipotential Surfaces

An equipotential surface is a surface in an electric field such that all points on it are at the same
potential.  For example, different spherical surfaces around a
charged sphere are equipotential surfaces.  One important property
of an equipotential surface is that the direction of the electric field
strength and flux density is always at right angles to the surface.
Also, electric flux emerges out normal to such a surface.  If, it is
not so, then there would be some component of E along the surface
resulting in potential difference between various points lying on
it which is contrary to the definition of an equipotential surface.

Fig. 4.18 Fig. 4.19

4.16. Potential and Electric Intensity Inside a Conducting Sphere

It has been experimentally found that when charge is given to a conducting body say, a sphere
then it resides entirely on its outer surface i.e., within a conducting body whether hollow or solid, the
charge is zero.  Hence, (i) flux is zero (ii) field intensity is zero (iii) all points within the conductor are
at the same potential as at its surface (Fig. 4.19).

Example 4.9.  Three concentric spheres of radii 4, 6 and 8 cm have charges of + 8, − 6 and + 4
μμC respectively.  What are the potentials and field strengths at points, 2, 5, 7 and 10 cm from the
centre.

Fig. 4.17
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Solution.  As shown in Fig. 4.20, let the three spheres be
marked A, B and C.  It should be remembered that (i) the field
intensity outside a sphere is the same as that obtained by con-
sidering the charge at its centre (ii) inside the sphere, the field
strength is zero (iii) potential anywhere inside a sphere is the
same as at its surface.

(i) Consider point ‘a’ at a distance of 2 cm from the cen-
tre O.  Since it is inside all the spheres, field strength at this
point is zero.

Potential at ‘a’

=  9

0
9 10

4
Q Q

d d
= ×

πε∑ ∑
=  

12 12 12
9 8 10 6 10 4 109 10

0.04 0.06 0.08

− − −⎛ ⎞× × ×× − + =⎜ ⎟⎜ ⎟⎝ ⎠
1.35 V

(ii) Since point ‘b’ is outside sphere A but inside B and C.

∴ Electrical field = 9
2

0

9 10 N/C
4

Q Q
dd

= ×
πε

=
12

9
2

8 109 10
0.05

−×× × =28.8 N/C

Potential at ‘b’ =
12 12 12

9 8 10 6 10 4 109 10
0.05 0.06 0.08

− − −⎛ ⎞× × ×× × − + =⎜ ⎟⎜ ⎟⎝ ⎠
 0.99 V

(iii) The field strength at point ‘c’ distant 7 cm from centre O

=
12 12

9
2 2

8 10 6 109 10
0.07 0.07

− −⎡ ⎤× ×× × − =⎢ ⎥
⎢ ⎥⎣ ⎦

3.67 N/C

Potential at ‘c’ =
12 12 12

9 8 10 6 10 4 109 10
0.07 0.07 0.08

− − −⎡ ⎤× × ×× × − + =⎢ ⎥
⎢ ⎥⎣ ⎦

0.71 V

(iv) Field strength at ‘d’ distant 10 cm from point O is

=
12 12 12

9
2 2 2

8 10 6 10 4 109 10
0.1 0.1 0.1

− − −⎡ ⎤× × ×× × − + =⎢ ⎥
⎢ ⎥⎣ ⎦

5.4 N/C

Potential at ‘d’ =
12 12 12

9 8 10 6 10 4 109 10
0.1 0.1 0.1

− − −⎡ ⎤× × ×× × − + =⎢ ⎥
⎢ ⎥⎣ ⎦

0.54 V

Example 4.10.   Two positive point charges of 12 ×  10−10 C and 8 ⋅ ×10−10 C are placed 10 cm
apart.  Find the work done in bringing the two charges 4 cm closer.

Solution.  Suppose the 12 ×  10−10 C charge to be fixed.  Now, the potential of a point 10 cm from

this charge =
10

9 12 109 10 108 V
0.1

−×× =

The potential of a point distant 6 cm from it

=
10

9 12 109 10 180 V
0.06

−×× × =

∴ potential difference = 180 − 108 = 72 V
Work done = charge ×  p.d. = 8 ×  10−10 ×  72 = 5.76 ×  ×  ×  ×  ×  10−−−−−8 joule
Example 4.11.  A point charge of 10−9 C is placed at a point A in free space.  Calculate :
(i) the intensity of electrostatic field on the surface of sphere of radius 5 cm and centre A.

Fig. 4.20
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(ii) the difference of potential between two points 20 cm and 10 cm away from the charge at A.
(Elements of Elect.-I, Banglore Univ. 1987)

Solution.  (i) E = Q/4πε0 r
2 = 10−9/4π × 8.854 ×  10−12 ×  (5 ×  10−2)2 = 3,595 V/m

(ii) Potential of first point = Q/4πε0 d = 10−9/4π × 8.854 ×  10−12 ×  0.2 = 45 V
Potential of second point = 10−9/4π × 8.854 ×  10−12 ×  0.1 = 90 V
∴ p.d. between two points = 90 − 45 = 45 V

4.17. Potential Gradient

It is defined as the rate of change of potential with distance in the direction of electric force

i.e.
dV
dx

Its unit is volt/metre although volt/cm is generally used in practice.  Suppose in an electric field
of strength E, there are two points dx metre apart.  The p.d. between them is

dV = . ( ) . dVE dx E dx E
dx

− = − ∴ = − ...(i)

The −−−−−ve sign indicates that the electric field is directed outward, while the potential increases
inward.

Hence, it means that electric intensity at a point is equal to the negative potential gradient at
that point.

4.18. Breakdown Voltage and Dielectric Strength
An insulator or dielectric is a substance within which there are no mobile electrons necessary for

electric conduction.  However, when the voltage applied to such an insulator exceeds a certain value,
then it breaks down and allows a heavy electric current (much larger than the usual leakage current)
to flow through it.  If the insulator is a solid medium, it gets punctured or cracked.

The disruptive or breakdown voltage of an insulator is the minimum voltage required to break it
down.*

Dielectric strength of an insulator or dielectric medium is given by the maximum potential
difference which a unit thickness of the medium can withstand without breaking down.

In other words, the dielectric strength is given by the potential gradient necessary to cause break-
down of an insulator.  Its unit is volt/metre (V/m) although it is usually expressed in kV/mm.

For example, when we say that the dielectric strength of air is 3 kV/mm, then it means that the
maximum p.d. which one mm thickness of air can withstand across it without breaking down is 3 kV
or 3000 volts.  If the p.d. exceeds this value, then air insulation breaks down allowing large electric
current to pass through.

Dielectric strength of various insulating materials is very important factor in the design of high-
voltage generators, motors and transformers.  Its value depends on the thickness of the insulator,
temperature, moisture, content, shape and several other factors.

For example doubling the thickness of insulation does not double the safe working voltage in a
machine.**

* Flashover is the disruptive discharge which taken places over the surface of an insulator and occurs when
the air surrounding it breaks down.  Disruptive conduction is luminous.

** The relation between the breakdown voltage V and the thickness of the dielectric is given approximately by
the relation V = At2/3

where A is a constant depending on the nature of the medium and also on the thickness t.  The above
statement is known as Baur’s law.
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Note.  It is obvious that the electric intensity E, potential gradient and dielectric strength are dimensionally
equal.

4.19. Safety Factor of a Dielectric
It is given by the ratio of the dielectric strength of the insulator and the electric field intensity

established in it.  If we represent the dielectric strength by Ebd and the actual field intensity by E, then
safety factor k = Ebd /E

For example, for air Ebd = 3 ×  106 V/m.   If we establish a field intensity of 3 ×  105 V/m in it, then,
k = 3 ×  106/3 ⋅  105 = 10.

4.20. Boundary Conditions
There are discontinuities in electric fields at the

boundaries between conductors and dielectrics of different
permittivities.  The relationships existing between the
electric field strengths and flux densities at the boundary
are called the boundary conditions.

With reference to Fig. 4.21, first boundary conditions
is that the normal component of flux density is continuous
across a surface.

As shown, the electric flux approaches the boundary
BB at an angle θ1 and leaves it at θ2.  D1n and D2n are the
normal components of D1 and D2.  According to first
boundary condition,

          D1n= D2n                    ...(i)
The second boundary condition is that the tangential

field strength is continuous across the boundary
∴ E1t = E2t ...(ii)
In Fig. 4.21, we see that

D1n = D1 cos θ1 and D2n = D2 cos θ2
Also E1 = D1/ε1 and E1t = D1 sin θ2/ε1
Similarly, E2 = D2/ε2 and E2t = D2 sin θ2/ε2

∴ 1

1

nD
E t

= 1

1tan
ε

θ
and 2

2

n

t

D
E

= 2

2tan
ε

θ

Since D1n = D2n and E1t = E 2 t ∴ 1 1

2 2

tan
tan

θ ε
=

θ ε
This gives the law of electric flux refraction at a boundary.
It is seen that if ε1 > ε2,  θ1 > θ2.

Table No. 4.1
Dielectric Constant and Strength

(*indicates average value)

Insulating material Dielectric constant or relative Dielectric Strength in
permittivity (er) kV/mm

Air 1.0006 3.2
Asbestos* 2 2
Bakelite 5 15
Epoxy 3.3 20

Fig. 4.21
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Glass 5-12 12-100
Marble* 7 2
Mica 4-8 20-200
Micanite 4-5-6 25-35
Mineral Oil 2.2 10
Mylar 3 400
Nylon 4.1 16
Paper 1.8-2.6 18
Paraffin wax 1.7-2.3 30
Polyethylene 2.3 40
Polyurethane 3.6 35
Porcelain 5-6.7 15
PVC 3.7 50
Quartz 4.5-4.7 8
Rubber 2.5-4 12-20
Teflon 2 20
Vacuum 1 infinity
Wood 2.5-7 ---

Example 4.12.  Find the radius of an isolated sphere capable of being charged to 1 million volt
potential before sparking into the air, given that breakdown voltage of air is 30,000 V/cm.

Solution.  Let r metres be the radius of the spheres, then

V = 6

0
10 V

4
Q

r
=

πε
...(i)

Breakdown voltage = 30,000 V/cm = 3 ×  106 V/m
Since electric intensity equals breakdown voltage

∴ E =
6

2
0

3 10 V/m
4

Q
r

= ×
πε

...(ii)

Dividing (i) by (ii), we get r = 1/3 = 0.33 metre
Example 4.13.  A parallel plate capacitor having waxes paper as the insulator has a capaci-

tance of 3800 pF, operating voltage of 600 V and safety factor of 2.5.  The waxed paper has a relative
permittivity of 4.3 and breakdown voltage of 15 ⋅  106 V/m.  Find the spacing d between the two plates
of the capacitor and the plate area.

Solution.  Breakdown voltage Vbd = operating voltage ×  safety factor = 600 ⋅  2.5 = 1500 V
Vbd = d ×  Ebd or d = 1500/15 ×  106 = 10−4 m = 0.1 mm
C = ε0 εr A/d or A = Cd/ε0 ε r = 3800 ×  10−9 ×  10−4/8.854 ×  10−12 ⋅  4.3 = 0.01 m2

Example 4.14.  Two brass plates are arranged horizontally, one 2 cm above the other and the
lower plate is earthed.  The plates are charged to a difference of potential of 6,000 volts.  A drop of
oil with an electric charge of 1.6 ×  10-19 C is in equilibrium between the plates so that it neither rises
nor falls.  What is the mass of the drop ?

Solution.  The electric intensity is equal to the potential gradient between the plates.
g = 6,000/2 = 3,000 volt/cm = 3 ×  105 V/m

∴ E = 3 ×  105 V/m or N/C
∴ force on drop = E ×  Q = 3 ×  105 ×  1.6 ×  10−19 = 4.8 ×  10−14 N

Wt. of drop = mg newton
∴ m ×  9.81 = 4.8 ×  10−14 ∴ m = 4.89 ×  ×  ×  ×  ×  10−−−−−15 kg
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Example 4.15.  A parallel-plate capacitor has plates
0.15 mm apart and dielectric with relative permittivity of 3.
Find the electric field intensity and the voltage between plates
if the surface charge is 5 ×  10−4 μC/cm2.

             (Electrical Engineering, Calcutta Univ.)
Solution.  The electric intensity between the plates is

                                E =
0 r

D
ε ε

 volt/metre;

Now, σ = 5 ×  10−4 μ C/cm2 = 5 ×  10−6 C/m2

Since, charge density equals flux density

∴                                E = 
6

12
0

5 10 188, 000 V/m =
8.854 10 3r

D −

−
×= =

ε ε × ×
188 kV/m

Now potential difference V = E ×  dx = 188,000 ×  (0.15 ×  10−3) = 2.82 V
Example 4.16.  A parallel-plate capacitor consists of two square metal plates 500 mm on a side

separated by 10 mm.  A slab of Teflon (εr = 2.0) 6 mm thick is placed on the lower plate leaving an
air gap 4 mm thick between it and the upper plate.  If 100 V is applied across the capacitor, find the
electric field (E0) in the air, electric field Et in Teflon, flux density Da in air, flux density Dt in Teflon
and potential difference Vt across Teflon slab. (Circuit and Field Theory, A.M.I.E. Sec. B)

Solution. C =
12 2

100
3 3

1 1 2 2

8.854 10 (0.5) 3.16 10 F
( / / ) (6 10 /2) (4 10 /1)e r

A
d d

−
−

− −
ε × ×= = ×

ε + ε × + ×
Q = CV = 3.16 ×  10−10 ×  100 = 31.6 ×  10−9 C
D = Q/A = 31.6 ×  10−9/(0.5)2 = 1.265 ×  10−7 C/m2

The charge or flux density will be the same in both media i.e. Da = Dt = D
In air, E0 = D/ε0 = 1.265 ×  10−7/8.854 ×  10−12 = 14,280 V/m
In Teflon, Et = D/ε0 ε r = 14,280/2 = 7,140 V/m

Vt = Et ×  dt = 7,140 ×  6 ×  10−3 = 42.8 V
Example 4.17.  Calculate the dielectric flux in micro-coulombs between two parallel plates

each 35 cm square with an air gap of 1.5 mm between them, the p.d. being 3,000 V.  A sheet of
insulating material 1 mm thick is inserted between the plates, the
permittivity of the insulating material being 6.  Find out the poten-
tial gradient in the insulating material and also in air if the voltage
across the plates is raised to 7,500 V.

(Elect. Engg.-I, Nagpur Univ.)
Solution.  The capacitance of the two parallel plates is

C = ε0 εr A/d Now, εr = 1 —for air
A = 35 ×  35 ×  10−4 = 1,225 ×  10−4 m2; d = 1.5 ×  10−2 m

∴ C =
12 4

16
3

8.854 10 1, 225 10 F 7.22 10 F
1.5 10

− −
−

−
× × × = ×

×

Charge  Q = CV = 7.22 ×  10−10  ×  3,000 coulomb
Fig. 4.22

A battery will transport charge from one
plate to the other until the voltage

produced by the charge buildup is equal
to the battery voltage

Capacitor
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Dielectric flux = 7.22 ×  3,000 ×  10−10 C
= 2.166 ×  10−6 C = 2.166 μC

With reference to Fig. 4.23, we have
V1 = E1 x1 = 0.5 ×  10−3 E1 ; V2 = 10−3 E2

Now V = V1 + V2

∴ 7,500 = 0.5 ×  10−3 E1 + 10−3 E2

or  E1 + 2 E2 = 15 ×  106 ...(i)
Also D = ε0 εr1 E1 = ε0 ε r2 E2 ∴ E1 = 6 E2 ...(ii)
From (i) and (ii), we obtain E1 = 11.25 ×××××  106 V/m; E2 = 1.875 ×××××  106 V/m

Example 4.18.  An electric field in a medium with relative permittivity of 7 passes into a
medium of relative permittivity 2.  If E makes an angle of 60° with the normal to the bound-
ary in the first dielectric, what angle does the field make with the normal in the second
dielectric ?

(Elect. Engg. Nagpur Univ.)
Solution.  As seen from Art. 4.19.

1

2

tan
tan

θ
θ

= 1

2 2

tan 60° 7or
tan 2

ε
=

ε θ
∴ tan θ2 = 3 2/7×  = 4.95 or θ2 = 26°20′′′′′

Example 4.19.  Two parallel sheets of glass having a uniform air gap between their inner
surfaces are sealed around their edges (Fig. 4.23).  They are immersed in oil having a relative
permittivity of 6 and are mounted vertically.  The glass has a relative permittivity of 3.  Calculate the
values of electric field strength in the glass and the air when that in the oil is 1.2 kV/m.  The field
enters the glass at 60° to the horizontal.

Solution.   Using the law of electric flux refraction, we get (Fig. 4.23).
tan θ2/tan θ1 = ε2/ε1 = ε0 εr2/ε0 εr1 = (εr2/εr1)

∴ tan θ2 = (6/3) tan 60°
= 2 ×  1.732 = 3.464;

θ2 = 73.9°
Similarly
tan θ3 = (εr3/ε r2) tan θ2 = (1/6) tan 73.9°

= 0.577; ∴ θ3 = 30°
As shown in Art. 4.20.

D1n = D2 n or D1 cos θ1 = D2 cos θ2

∴ D2 = D1 ×  cos θ1/cos θ2 or ε0 εr2 E2

= ε0 εr1 E1 ×  cos θ1/cos θ2
∴ 6 E2 = 3 ×  1.2 ×  103 ×  cos 60°/cos 73.9°
∴ E2 = 1082 V/m
Now, ε0 εr3 E3 cos θ3 = ε0 ε r2 E2 cos θ2

∴ E3 = E2 (εr2/εr3) ×  (cos θ2/cos θ3)
= 1082 (6/1) (cos 73.9°/cos 30°) = 2079V/m Fig. 4.23
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Tutorial Problems No. 4.1
1. Two parallel metal plates of large area are spaced at a distance of 1 cm from each other in air and a

p.d. of 5,000 V is maintained between them.  If a sheet of glass 0.5 cm thick and having a relative
permittivity of 6 is introduced between the plates, what will be the maximum electric stress and
where will it occur ? [8.57 kV/cm; in air]

2. A capacitor, formed by two parallel plates of large area, spaced 2 cm apart in air, is connected to a
10,000 V d.c. supply.  Calculate the electric stress in the air when a flat sheet of glass of thickness 1.5
cm and relative permittivity 7 is introduced between the plates. [1.4 ×××××  108 V/m)

3. A capacitor is made up of two parallel circular metal discs separated by three layers of dielectric of
equal thickness but having relative permittivities  of 3, 4 and 5 respectively.  The diameter of each
disc is 25.4  cm and the distance between them is 6 cm.  Calculate the potential gradient in each
dielectric when a p.d. of 1,500 V is applied between the discs. [319.2; 239.4; 191.5 kV/m]

4. A capacitor, formed by two parallel plates of large area, spaced 2 cm apart in air, is connected to a
10,000 V d.c. supply.  Calculate the electric stress in the air when a flat sheet of glass of thickness 0.5
cm and relative permittivity 5 is introduced between the plates. [0.625 ×  ×  ×  ×  ×  104 V/m]

5. The capacitance of a capacitor formed by two parallel metal plates, each having an effective surface
area of 50 cm2 and separated by a dielectric 1 mm thick, is 0.0001 μF.  The plates are charged to a p.d.
of 200 V.  Calculate (a) the charge stored (b) the electric flux density (c) the relative permittivity of
the dielectric. [(a) 0.02 μC (b) 4 μC/m2 (c) 2.26]

6. A capacitor is constructed from two parallel metallic circular plates separated by three layers of
dielectric each 0.5 cm thick and having relative permittivity of 4, 6 and 8 respectively.  If the metal
discs are 15.25 cm in diameter, calculate the potential gradient in each dielectric when the applied
voltage is 1,000 volts. (Elect. Engg.-I Delhi Univ.)

7. A point electric charge of 8 μC is kept at a distance of 1 metre from another point charge of − 4 μC
in free space.  Determine the location of a point along the line joining two charges where in the
electric field intensity is zero.

(Elect. Engineering, Kerala Univ.)
8. In a given R-L circuit, R = 35Ω and L = 0.1H. Find (i) current through the circuit  (ii) power

factor if a 50 Hz frequency, voltage V = 220∠30° is applied across the circuit.
(RGPV, Bhopal  2001)

9. Three voltage represented by e1 = 20 sin ω t, e2 = 30 sin (ω t = 45°) and e3 = sin (ω t + 30°)
are connected in series and then connected to a load of impedance (2 + j 3) Ω. Find the resultant
current and power factor of the circuit. Draw the phasor diagram.

(B.P.T.U. Orissa 2003) (RGPV Bhopal 2001)

OBJECTIVE TESTS – 4

1. The unit of absolute permittivity of a
medium is
(a) joule/coulomb
(b) newton-metre
(c) farad/metere
(d) farad/coulomb

2. If relative permittivity of mica is 5, its abso-
lute permittivity is
(a) 5 ε0 (b) 5/ε0
(c) ε0/5 (d) 8.854 ×  10−12

3. Two similar electric charges of 1 C each are
placed 1 m apart in air.  Force of repulsion

between them would be nearly...... newton
(a) 1
(b) 9 ×  109

(c) 4 π
(d) 8.854 ×  10−12

4. Electric flux emanating from an electric
charge of + Q coulomb is
(a) Q/ε0 (b) Q/εr
(c) Q/ε0εr (d) Q

5. The unit of electric intensity is
(a) joule/coulomb
(b) newton/coulomb
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(c) volt/metre
(d) both (b) and (c)

6. If D is the electric flux density, then value
of electric intensity in air is
(a) D/ε0 (b) D/ε0εr
(c) dV/dt (d) Q/εA

7. For any medium, electric flux density D is
related to electric intensity E by the equation
(a) D = ε0 E (b) D  = ε0ε r E
(c) D = E/ε0εr (d) D = ε0E/εr

8. Inside a conducting sphere,...remains
constant
(a) electric flux
(b) electric intensity
(c) charge
(d) potential

9. The SI unit of electric intensity is
(a) N/m
(b) V/m
(c) N/C
(d) either (b) or (c)

10. According to Gauss’s theorem, the surface
integral of the normal component of elec-
tric flux density D over a closed surface con-
taining charge Q is
(a) Q (b) Q/ε0
(c) ε0 Q (d) Q2/ε0

11. Which of the following is zero inside a
charged conducting sphere ?
(a) potential
(b) electric intensity
(c) both (a) and (b)
(d) both (b) and (c)

12. In practice, earth is chosen as a place of zero
electric potential because it
(a) is non-conducting
(b) is easily available
(c) keeps lossing and gaining electric

charge every day
(d) has almost constant potential.

ANSWERS
1. c 2. a 3. b 4. d 5. d 6. a
7. b 8. d 9. d 10. a 11. c 12. d
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