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71.1.  Introduction
Boolean algebra, named after its pioneer George Boole (1815-1864) is the algebra of logic pres-

ently applied to the opertion of computer devices.  The rules of this algebra are based on human
reasoning.  It originated from the study of how we reason, what lines of reasoning are valid and what
constitutes proof etc.

Starting with his investigation of the laws of
thought, Boole developed in 1854 a mathematical sys-
tem of logic in which he expressed truth functions as
symbols and then manipulated these symbols to arrive
at a conclusion.  His new system was not the ordinary
numerical algebra we know from our high school days
but a totally new system called logic algebra.  For ex-
ample, in Boolean algebra A  + A  = A  and not 2A  as is the
case in ordinary algebra.

Boolean algebra remained in the realm of philoso-
phy till 1938 when Claude E.  Shannon used it to solve
relay logic problems.  As we know, all thinking and logic
is concerned with finding answers to binary or two-
valued questions like : is it good or bad, right or wrong,
true or false etc.  This binary nature of logic is exactly
like the binary working of relay and switching circuits
where relay is either energised or not, light is ON or OFF
or pulse is present or not.  Because of its very logical
nature, Boolean algebra is ideal for the design and analy-
sis of ligic circuits used in computers.  Morever, it pro-
vides an economical and straight forward way of describing computer circuitry and complicated
switching circuits.  As compared to other mathematical tools of analysis and design, Boolean algebra
has the advantages of simplicity, speed and accuracy.

71.2.  Unique Feature of Boolean Algebra
As we know, the different variables used in ordinary algebra can have any value including plus

and minus values.  There is no restriction on the value they can assume.  For example, in the equation
2x + 3y = z, the variables x, y and z can take on any value available in the entire field of real numbers.

However, the variables used in Boolean algebra have a unique property i.e. they can assume only
one of the two possible values of 0 and 1.  Each of the variable used in a logical or Boolean equation
can assume only the value 0 or 1.  For example, in the logical equation A  + B = C, each of the three
variables A , B and C can have only the values of either 0 or 1.  This point must be clearly taken note
of by the reader for easy understanding of the laws of Boolean algebra.

71.3.  Laws of Boolean Algebra
As started earlier, Boolean algebra is a system of Mathematics

based on logic.  It has its own set of fundamental laws which are
necessary for manipulating different Boolean expressions.

1. OR Laws
These four laws have already been discussed in the previous chapter.  These are
Law 1. A + 0 =A Law 3.     A  + A  = A

Law 2. A  + 1 = 1 Law 4.     A  + A  = 1

Fig. 71.1

George Boole (1815–1864)



Boolean Algebra and Logic Families 2587

The expression given in Law 4 can be understood with the help of Fig. 71.1.  Consider the
following two possibilities :

(i ) When A  = 0, A  = 1 ∴ A  + A  = 0 + 1 = 1
(ii ) When A  = 1, A  = 0 ∴ A  + A = 1 + 0 = 1
2. AND Laws
Law 5. A  . 0 = 0 Law 7. A  . A = A

Law 6. A  . 1 = A Law 8. A  . A  = 0
The expression for Law 8 can be easily understood with the help of the logic circuit of Fig. 71.2.

Consider the following two possibilities :

(i ) When A  = 0, A  = 1          ∴    A  . A  = 0.1 = 0

(ii ) When A  = 1, A  = 0          ∴    A . A  = 1.0 = 0
3. Laws of Complementation

Law 9. 0  = 1 Law 10.  1  = 0

Law 11. if A  = 0, then A  = 1 Law 12.  if A  = 1, then A  = 0
Law 13.           A  = A
4. Commutative Laws
These laws allow change in the position of variables in OR and AND expressions.

Law 14.         A  + B = B + A   Law 15.     A . B = B . A
These two laws express the fact that the order in which a combination of terms is performed does

not affect the final result of the combination.
5. Associative Laws
These laws allow removal of brackets from logical expression and regrouping of variables.
Law 16.   A + (B + C) = (A  + B) + C
Law 17.   (A  + B) + (C + D) = A  + B + C + D Law 18. A  . (B . C) = (A  . B) . C

6. Distributive Laws
These laws permit factoring or multiplying out of an expression.
Law 19. A  (B + C) = A B + AC Law 20. A  + BC = (A  + B) (A  + C)

Law 21. A  + A  . B = A  + B
7. Absorptive Laws
These enable us to reduce a complicated logic expression to a simpler form by absorbing some of

the terms into existing terms.
Law 22.  A + AB = A  Law 23.  A . (A  + B) = A

Law 24. A  . ( A  + B) = A B
The above laws can be used to prove any given

Boolean identiry and also for simplifying compli-
cated expressions.

71.4. Equivalent Switching Circuits
The equivalent circuits to illustrate some of the

OR and AND laws given above are shown in
Fig. 71.3.

(i ) Fig. 71.3 (a) illustrates A  + 1 = 1.  Here,
lower switch is permanently closed representing 1.
Hence, value of the OR function is 1 (i.e. it is ON)
whatever the value of A . Fig. 71.3

Fig. 71.2
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(ii ) Fig. 71.3 (b) represents A  + 0 = A .  Here, function value is determined by A  alone.
(iii ) In Fig. 71.3 (c) when A  opens, A  closes and vice versa.  Obviously, whatever the position of

A , the circuit would always be ON proving that A  + A  = 1.
(iv ) Fig. 71.3 (d) proves A  + A  = A .  It shows that final result depends on the value of A  alone.  If

A  = 0, the two switches are open, hence circuit is OFF.  If A  = 1, both switches are closed.  Hence,
circuit is ON.

(v ) In Fig. 71.4 (a), the circuit is permanently OFF
irrespective of the value of A .  It is due to permanent
open (0) in the circuit.  Hence, it proves A  . 0 = 0.

(vi ) Fig. 71.4 (b) shows that circuit conditions will
depend solely on the position of the switch.  If A  = 1, circuit is ON (1) and when A  = 0, circuit is OFF
(0).  It is all due to the presence of a permanent short (1) in the series circuit.  Hence, everything
depends on A .

Example 71.1.  Prove the following Boolean identity : AC + ABC = AC

Solution.  Taking the left hand side expression as y, we get
y = AC + ABC = AC (1 + B)

Now 1 + B = 1 —Law 2
∴ y = AC . 1 = AC —Law 6
∴ AC + ABC = AC

Example 71.2.  Determine the logic expression for the output Y, from the truth table shown in
Fig. 71.5.  Simplify and sketch the logic circuit for the simplified expression.

Solution.  There are two 1s in the output column of the given truth table.  The corresponding
binary values are 001 and 101.  These values are converted into product terms as follows :

001 → A B C and 101 → A B C.

Inputs Output
A B C Y

0 0 0 0

0 0 1 1 → A B C
0 1 0 0
0 1 1 0
1 0 0 0

1 0 1 1 →  A B C
1 1 0 0

1 1 1 0

   Fig. 71.5

The resulting expression for the output,

Y = A B C + A B C
= ( A  + A ) B C ...(Law 19)

= 1. B C ...(Law 4)
= B C ...(Law 6)

Fig. 71.6 shows the logic circuit to implement the simplified logic expression for the output.  As
seen it is formed by ANDing the variables B  and C .  The B  can be obtained by inverting B.

Example 71.3.  Prove the following Boolean identity : (A  + B) (A  + C) = A  + BC

Solution.  Putting the left hand side expression equal to y, we get

Fig. 71.4

Fig. 71.6
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Y = (A  + B) (A  + C)
= A A + AC + AB + BC —Law 19
= A  + AC + A B + BC —Law 7

= A  + A B + AC + BC

= A  (1 + B) + AC + BC —Law 19
= A  + AC + BC —Law 2

= A  (1 + C) + BC —Law 19
= A  + BC —Law 2

∴ (A  + B) (A + C) = A  + BC

Example 71.4.  Prove the following identity : A  + A B = A  + B

Solution.  Let the left-hand side expression be put equal to Y .

Y = A  + A B = A  . 1 + A B —Law 6

= A  (1 + B) + A B —Law 12
= A  . 1 + A B + A B —Law 19

= A  + BA + B A —Law 6 and 15
= A  + B (A  + A ) —Law 19
= A  + B . 1 —Law 4
= A  + B —Law 6

∴ A  + A B = A  + B

Example 71.5.  Prove the following Boolean identity : (A  + B) (A  + B ) ( A  + C) = AC

(Digital Computations, Punjab Univ. 1990)
Solution.  Left the left-hand side expressionbe represented by Y .

∴ Y = (A  + B) (A  + B ) ( A  + C) = (A A + A B  + B A + B B ) ( A  + C)

= (A  + A B + A B ) ( A  + C) = [A  (1 + B) + A B ] ( A  + C) � B B  = 0

= (A  + A B ) ( A  + C) = A  (1 + B ) ( A  + C)

= (A  . 1) ( A  + C) = A  ( A  + C) = A A  + AC = AC � A A  = 0
Example 71.6.  Prove the following Boolean identity :

ABC + A B C + AB C = A  + (B + C)
(Digital Electronic Systems-I, Kurukshetra Univ. 1991)

Solution.  Equating the left-hand side expression to Y , we have

Y = ABC + A B C + A B C  = AC (B + B ) + A B C

= AC + ABC —Law 4

= A  (C + B C )
= A  (C + B) —Law 21

= A  (B + C) —Law 14
Hence, it proves the given identity.
Example 71.7.  Simplify the following Boolean Expression :

A B C   + A B C  + A BC + ABC + A B C

(Digital Computations, Punjab Univ.  1992)
Solution.  Bringing together those terms which have two common letters, we get

Y = A B C  + ABC + A B C  + A B C + A BC
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= A B ( C  + C) + A B  ( C  + C) + A BC

= A B + A B  + A BC —Law 4
= A  (B + B ) + A BC —Law 4

= A   + A BC = A  + BC —Law 21
Example 71.8.  Simplify the following expression and show the minimum gate implementation.

Y = A  . B. C . D  + A  . B C . D  + B . C . D

Solution.  As seen from OR and AND laws of Art 67.3, A  + A  =
1 and A  . 1 = A

∴ Y = . . ( ) . .BC D A A B C D+ +  = . . .1 . . .BC D BC D+

= B . C . D  + B . C . D = B . C . (D + D ) = B . C . 1 = B . C .
Minimum gate implementation is shown by the circuit of Fig. 71.7
Example 71.9.  Simplify the following Boolean expression and draw the logic circuits for the

simplified expressions.

(a) Y  = A BC + A B C + ABC + B C (b) Y  = B  (A  + C) + C ( A  + B) + AC

Solution.  (a) Y = A BC + A B C + ABC + B C  = BC (A  + A ) + AC ( B  + B) + B C

= BC + AC + B C  = B (C + C ) + AC = AC + B

Fig. 71.8 Fig. 71.9

(b) Y = B  (A  + C) + C ( A  + B) + AC = A B  + B C + A C + BC + AC
= A B  + C ( B  + A  + B + A ) = A B  + C . 1 = A B  + C

Example 71.10.  Using truth table, prove that A + A B = A  + B and illustrate the equivalence
with the help of a switching circuit.

Solution.  Since there are only two variables A  and
B, their number of possible combination is 22 = 4 in
terms of 0 and 1.

As seen, A  is the negative of A.  In the fourth

column of Table 71.1, A  has been ANDed with B.  In the
fifth column, A  has been ORed with A B.  The values in
last column have been obtained by ORing A  with B.  By
comparing results of column 5 to 6, the equivalence
between the two statements can be proved.

Switching circuit of Fig. 71.10 (a) represents (A  + A B).  In this circuit, when A  is open, A  is
closed and vice versa.  It can be shown that his circuit becomes closed with either A  or B is closed.

(i) when A  is closed, then A opens.  Cir-
cuit is completed via the upper branch.

(ii) keeping A  open, when we close B, the
circuit again becomes closed via lower branch

because A  is already closed (due to A  being
open).

Hence, all that we have to do for closing
the circuit of Fig. 71.10 (a) is to close either switch A  or B.  It is exactly what circuit of Fig. 71.10 (b) does.

Table No. 71.1

A B A A B A  + A B A + B
0 0 1 0 0 0

0 1 1 1 1 1
1 0 0 0 1 1
1 1 0 0 1 1

Fig. 71.7

Fig. 71.10
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Example 71.11.  Simplify the expression : (A B + C) (A B + D)

Solution.  Let Y = (AB +C) (AB + D)

= ABAB + ABD  + ABC + CD —Law 19
= AABB + ABD + ABC + CD

= AB + ABD + ABC + CD —Law 7

= A B (1 + D) + ABC + CD = A B + ABC + CD —Law 2
= A B (1 + C) + CD = A B + CD

∴ (AB + C) (AB + D) = AB + CD

71.5.  DE Morgan’s Theorem

These two theorems (or rules) are a great help in simplifying complicated logical expressions.
The theorems can be started as under :

Law 25.    A B+   = A  . B Law 26. .A B  = A  + B

The first statement says that the complement of a sum equals the product of complements.  The
second statement says that the complement of a product equals the sum of the complements.  In fact,
it allows transformation from a sum-of-products from to a product-of-sum from.

As seen from the above two laws, the procedure required for taking out an expression from under
a NOT sign is as follows :

1. complement the given expression i.e., remove the overall NOT sign
2. change all and ANDs to ORs and all the ORs to ANDs.
3. complement or negate all individual variables.
As an illustration, take the following example

A BC+ = A  + BC —step 1

= A  (B + C) —step 2

= A  ( B  + C ) —step 3

Next, consider this example,

( ) ( )A B C A B C+ + + + = ( A  + B + C ) ( A  + B + C) —step 1

= A B C  + A BC
—step 2

= A B C A B C+ —step 3

= A B C + A B C
This process is called demorganization.  It should, however, be noted that opposite procedure

would be followed in bringing an expression under the NOT sign.  Let us bring the expression A  + B

+ C  under the NOT sign.

A B C+ + = A B C+ + —step 3
= A  + B + C
= ABC —step 2

= ABC —step 1
Fig. 71.11 shows the circuits to illustrate De Morgan’s theo-

rems.
As seen, basic logic function can be either an OR gate or

an AND gate.
Fig. 71.11
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Example 71.12.  Demorganize the expression :
( ) ( )A B C D+ +

Solution.  The procedure is as explained above.

( ) ( )A B C D+ + = (A  + B) (C + D)
—step 1

= (AB) + (CD)
—step 2

= AB  + CD
—step 3

Example 71.13.  Simplify each of the following expres-
sions using De Morgan’s theorems :

(a) ( )A B C D+

(b) ( ) ( )M N M N+ + (c) AB C D

Solution.  Please note that there is more than one way of
simplifying the expressions given in part (a), (b) and (c).

(a) ( )A B C D+ = ( )A B C D+ ... step 1

= ( )A B C D+ + + ... step 2

= A B C D+ + + ... step 3

= A B C D+ + + ...(� B C+  = B + C )

(b) ( ) ( )M N M N+ + = ( ) ( )M N M N+ + ... step 1

= ( ) ( )M N M N+ ... step 2

= ( )M N M N+ ... step 3

= M N M N+ ... step 4

(c) AB C D = AB C D ... step 1

= AB C D+ ... step 2

= AB C D+ ... step 3

= AB C D+ ...(�� = AB CAB C )

The term AB C  can be simplified further by De Morganising the term AB  as A  + B .  Thus

AB C D   = AB C D+  = ( )A B C D+ +   = A C B C D+ +

Example 71.14.  Find switching circuits for the following logic expressions :

(i) A  . (B + C) (ii) A B  + CD (iii) ( A B + AC) C
(Industrial Electronics, City & Guilds, London)

Solution.  (i )  A . (B + C)
Here, switches B and C have been ORed i.e. connected in parallel.  This parallel circuit is con-

nected in series with switch A  because (B + C) has been AND ed with A .  hence, the circuit becomes
as shown in Fig. 71.12 (a).  As seen, it is a series-parallel circuit.

De Morgan (1806–1871)
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(ii) AB + CD

Here, AB  has been ORed with CD.  We
can easily make out that a 2-brached circuit is
needed for this logic expression.  One branch

contains switch A  in series with B  (with one
contact point shows raised to indicate nega-
tion) and the other branch contains two series-connected
switches C and D as show in Fig. 71.12 (b).

(iii) ( )AB + AC C
From the look of it, we can  make out that it consists of

a series-parallel circuit as shown in Fig. 71.13.  A B has

been ORed with AC i.e. A B  and AC are in parallel.  Of

course, A  and B are in series in one branch where as A  and C are in series in the other branch.  Both
these parallel branches are in series with C .

Example 71.15.  Prove that 3-input NAND gate of Fig. 71.14 (a) is equivalent to the bubbled
AND gate of Fig. 71.14 (b).

Solution.  The output of NAND gate is ABC  and that of bubbled OR gate is A B C+ + .  We
have to show that the above two expressions are equivalent.

De Morgan’s theorem can be used to prove the above equivalence,

ABC  = ABC —step 1
=  A  + B + C —step 2

= A B C+ + —step 3

71.6.  Duals

Basic duality underlies all Boolean algebra.  Each expression has its dual which is as true as the
original expression.  For getting the dual of a given Boolean expression, the procedure is to convert

1. all 1s to 0s and all 0s to 1s.

2. all ANDs to ORs and all ORs to
ANDs.

The dual so obtained is also found to
be true.

Some of the Boolean relations and their
duals are given in Table 71.2.

Example 71.16.  Design a logic circuit
whose output is HIGH only when a majority
of the inputs A, B and C are HIGH.

Solution.  Since there are three inputs,
A , B and C, therefore whenever two or more
than two (i.e. a majority) inputs are HIGH,
the output is HIGH.  This situation can be represented in the form of a truth table as shown in Fig.
71.15.

Table No. 71.2
Relation Dual Relation
A . 0 = 0 A  + 1 = 1
A . A = A A + A = A

A  . A = 0 A  + A = 1

A . 1 = A A  + 0 = A
A  . (A + B) = A A + AB = 1

A  . ( A  + B) = AB A  + A B = A  + B

Fig. 71.12

Fig. 71.13

Fig. 71.14
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A B C Y

0 0 0 0
0 0 1 0
0 1 0 0

0 1 1 1 → A BC
1 0 0 0

1 0 1 1 → A B C
1 1 0 1 → ABC
1 1 1 1 → ABC

Fig. 71.15 Fig. 71.16

There are four 1s in the output column of the truth table.  The corresponding binary values are
011, 101, 110 and 111 respectively.  Converting these values into product terms and summing up all the
terms, we get

Y = A B C  + A B C + A BC + ABC
Adding the term ABC two times from our side in the Boolean expression for the output,

Y = A B C  + A B C + A BC + ABC + ABC + ABC (��ABC + ABC + ABC = ABC)
Bringing together those terms which have two common letters, we get,

Y = A B C  + ABC + A B C + ABC + A BC + ABC

= A B ( C  + C) + AC ( B  + B) + BC ( A  + A )

= A B + AC + BC (��C  + C = B  + B = A  + A  = 1)
= A B + C (A  + B)

The logic circuit that produces the output Y  = A B + C (A  + B) is as shown in Fig. 71.16.

Alternatively :

You can also arrange the equation,

 Y  =  A B + AC + BC

as Y = A (B + C) + BC  . . . (i)

or  Y = (A + C) B + AC  . . . (ii)

If you implement equation (i) or (ii) using AND and OR logic gates, the number of logic gates is
used will still be the same (4).

Example 71.17.  Determine the
Boolean expression for the logic cir-
cuit shown in Fig. 71.17.  Simplify
the Boolean expression using Bool-
ean Laws and De Morgan’s theorem.
Redraw the logic circuit using the
simplified Boolean expression.

Solution.  The output of the given
circuit can be obtained by determin-
ing the output of each logic gate while
working from left to right.

Fig. 71.17
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Fig. 71.18

As seen from the logic circuit shown in Fig. 71.18.  The output of the circuit is,

X = BC ( )AB C+

The output, X  can be simplified by De Morganizing the term ( )AB C+  as shown below.

BC ( )AB C+ = BC (A B + C )         ... step 1

= BC (A  + B) . C       ... step 2

= BC ( ) .A B C+      ... step 3

= BC ( )A B+ C        ... Law 13

= BC ( )A B+            ... Law 7

= A BC + BC B
=  A BC + 0 =  ... Law 8

= A BC                        ... Law 1

The logic circuit with a simplified Boolean expression X  = A BC  is as shown in Fig. 71.19.

  Example 71.18.  Determine the output X of a
logic circuit shown in Fig. 71.20.  Simplify the
output expression using Boolean Laws and theo-
rems.  Redraw the logic circuit with the simpli-
fied  expression.
      Solution.  The output of the given logic cir-

cuit can be obtained by determining the output
of each logic gate while working from left to right.

As seen from Fig. 71.21, the output,

X  =  ( ) ( )AB AB A B+ +
    = A B A + A B A   + A B B  + A B B
    =  0 + A B A  + 0 + A B B ... Law 8
   = A B  + A B ... Law and Law 1
   = A B                            ... Law 3

Using the simplified Boolean expression, the logic circuit is as shown in Fig. 71.22.

Fig. 71.19

Fig. 71.20

Fig. 71.21 Fig. 71.22
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Example 71.19.  Consider the logic cir-
cuit shown in Fig. 71.23.  Determine the Bool-
ean expression at the circuit output, simplify
it.  From the simplified Boolean expression,
find which logic gate is redundant in the given
logic circuit.

Solution.  As seen from Fig. 71.24, the logic
circuit output,

X   =  W WZ XY Z+ +
The expression can be simplified as follows :

     =  W WZ XY Z+ +
     = (1 )W Z XY Z+ +  —Law 19

     = W XY Z+  —Law 2

From the simplified Boolean expression of the output X  = W XY Z+ , and the actual output

W WZ XY Z+ + , we find that the two-input AND gate (producing the term WZ ) is redundant.

Example 71.20.  Determine the output of the logic circuit shown in Fig. 71.25.  Simplify the
output Boolean expression and sketch the logic circuit.

Solution.  The output of the circuit can be obtained by determining the output of each logic gate
while working from left to right.

Fig. 71.23

Fig. 71.24

Fig. 71.25
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Fig. 71.27

Fig. 71.26

As seen from the circuit shown in Fig. 71.26, we find that the output,

y = AB AB+
The sketch of a logic circuit for the simplified Boolean expression is as shown in

Fig. 71.27.

Alternatively :

( )
( )
( 1)

y AB AB
AB A B
AB B A
A B A

B A

= +
= + +
= + +
= + +
= +

The logic circuit to implement this logic equation is as shown in Fig. 71.27(b). Notice the differ-
ence in terms of the number and type of logic gates used in the circuits shown in Fig. 71.27.
So when you are simplifying and designing logic circuits, it is always possible to have more than one
solution.

The circuit shown in Fig. 71.27 shows that it makes use of one inverter (or NOT gate), one AND
gate, one NAND gate and one OR gate. In other words, there are four different types of logic gates.
However the logic circuit of  Fig. 71.27 (b) makes use of only three logic gates (two inverters and one
OR gate).

71.7.  Standard Forms of Boolean Expressions
All Boolean expressions, regardless of their form, can be converted into either of the two follow-

ing standard forms :
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1.  Sum-of-products (SOP) form and  2.  Product-of-sums (POS) form.

The standardization of Boolean expressions makes their evaluation, simplification and implemen-
tation much more systematic and easier.  Now we shall discuss these two standard forms in more
detail.

71.8.  The Sum-of-Products (SOP) Form
A product term is a term consisting of the product (or Boolean multiplication) of literals (i.e.

variables or their complements).  When we add two or more product terms, the resulting expression is
called, sum-of-products (SOP) expression.  Some examples of sum-of-products expressions are

AB ABC+ , ,ABC ACD ABCD AB+ +  + AC + A B C

Sometimes, it is convenient to define the set of variables contained in the expression (in either

complemented or uncomplemented form) as a domain.  For example, domain of the expression A B  +

A B is the set of variables A  and B.  Similarly the domain of the expression A BC + ABC + A B CD is the
set of variables A, B, C and D.

Any logic expression can be changed into SOP form by applying Boolean algebra laws and
theorems.  For example, the expression A  (BC + D) can be converted to SOP form by applying the
distributive law :

A  (BC + D) = ABC + AD

71.9.  The Standard SOP Form

So far, we have seen SOP (sum-of-products) expressions in which some of the product terms do
not contain all the variables in the domain of the expression.  For example, the expression, A BC +
A C D  + A B CD has a domain made up of the variables A, B, C and D.  But notice that the first two
terms contains only three variables, i.e. D or D  is missing from the first term and B or B  is missing
from the second term.

A standard SOP expression is defined as an expression in which all the variables in the domain
apper in each product term.  For example A BCD + A B C D + A B CD is a standard SOP expression.
Standard SOP expressions are important in constructing truth tables and in karnaugh map simplifica-
tion method.

It is very straightforward to convert non-standard product term to a standard SOP using Boolean
algebra.  Each product term in the SOP expression that does not contain all the variables in the domain
has to be expanded to standard form to include all the variables in the domain and their complements.
As stated below, a nonstandard SOP expression is converted into standard form using Boolean
algebra law 4 : A  + A  = 1 i.e. a variable added to its complement equals 1.

Step 1.  Multiply each nonstandard product term by a term made up of the sum of a missing
variable and its complement.  This results in two product terms.  It is possible because we know that
we can multiply anything by 1 without changing its value.

Step 2.  Repeat step 1 until all resulting product terms contain all variables in the domain in either
complemented or uncomplemented form.  Note that in converting a product term to a standard form,
the number of product terms is doubled for each missing variable.

For example, suppose we want to convert the Boolean expression A BC + A C D + A B CD to a
standard SOP form.  Then following the above procedure we proceed as below :

A BC (D + D ) + A  (B + B ) C D + A B CD

= A BCD + A BC D  + A B C D + A B C D + A B CD
The expression given above is a standard SOP expression.
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71.10. The Product-of-sums (POS) Form
The sum term is a term consisting of the sum (or Boolean addition) of literals (i.e. variables or their

complements).  When we multiply two or more sum terms, the resulting expression is called product-

of-sums (POS).  Some examples of POS form are (A + B ) ( A  + B + C), ( A  + B + C)

(A + C  + D) (A + B  + C + D) and ( A + B ) (A  + C) ( A  + B  + C) .

It may be carefully noted that a POS expression, can contain a single-variable term as in A  (A  +

B  + C) (B + C  + D ).  In POS expression, a single overbar cannot extend over more than one variable,
although more than one variable in a term can have an overbar.

71.11. The Standard POS Form
So far, we have seen POS (product-of-sums) expressions in which some of the sum terms do not

contain all the variables in the domain of the expression.  For example, the expression, ( A  + B + C),

(A  + C  + D) (A  + B  + C + D) has a domain made up of variables, A, B, C and D.  Notice that the
complete set of variables in the domain is not represented in the first two terms of the expression, i.e.

D or D  is missing in the first term and B or B  is missing in the second term.
A standard POS expression is defined as an expression in which all the variables in the domain

appear in each sum term.  For example ( A  + B + C + D) (A  + B + C  + D) (A  + B  + C + D) is a standard
POS form.  Any nonstandard POS expression can be converted to a standard form using Boolean
algebra.

Each sum term in an POS expression that does not contain all the variables in the domain can be
expanded to standard form to include all variables in the domain and their complements.  As stated
below : a nonstandard POS expression is converted into a standard form using Boolean algebra Law

8 : A  . A  = 0, i.e. a variable multiplied by its complemented equals 0.
Step 1.  Add to each nonstandard product term a term made up of the ptoduct of a missing

variable and its complement.  This results in two sum terms.  This is possible because we know that we
can add 0 to anything without changing its value.

Step 2.  Apply law 20, i.e. A  + BC = (A  + B) (A  + C)
Step 3.  Repeat Step 1 until all resulting sum terms contain all variables in the domain in either

complemented or uncomplemented form.

For example we want to convert the Boolean expression,

( A  + B + C) (A  + C  + D) (A  + B  + C + D)
into a standard POS form.  Then following the above prodcedure, we proceed as below :

( A + B + C + D D ) (A  + B B  + C + D) (A  + B  + C + D)

= ( A  + B + C + D) ( A  + B + C + D ) (A  + B + C + D) (A  + B  + C  + D) (A  + B  + C + D)
The expression given above is a standard POS expression

71.12. The Karnaugh Map

The Karnaugh map (or simply a K-map) is similar to a truth table because it presents all the
possible values of input variables and the resulting output for each value.  However, instead of being
organised into columns and rows like a truth table, the Karnaugh map is an array of squares (or cells)
in which each square represents a binary value of the input variables.  The squares are arranged in a
way so that simplification of given expression is simply a matter of grouping the squares.  Karnaugh
maps can be used for expression with two-three, four, and five variable Karnaugh maps to illustrate the
principles.  Karnaugh map with five-variables is beyond the scope of this book.  For higher number of
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variables, a Quine-McClusky method can be used.  This method is also beyond the scope of this
book.

The number of squares in a Karnaugh map is equal to the total number of possible input variable
combinations (as is the number of rows in a truth table).  For two variables, the number of square is 22

= 4, for three variables, the number of squares is 23 = 8 and for four variables, the number of squares
is 24 = 16.

71.13. The Two-variable Karnaugh Map

Fig. 71.28 (a) shows a two-variable Karnaugh map.  As seen, it is an array of four squares.  In this
cass, A  and B are used for two variables
although any other two letters could be
used.  The binary values of A  (i.e. 0 and 1)
are indicated along the left side as A  and
A  (notice the sequence) and the binary
values of B are indicated across the top
as B  and B.  The value of a given square
is the value of A  at the left in the same row
combined with the value of B at the top in
the same column.  For example, a square
in the upper left corner has a value of A B
and a square in the lower right corner has a value of A B.  Fig. 71.28 (b) shows the standard product
terms represented by each square in the Karnaugh map.

71.14. The Three-variable Karnaugh Map
Fig. 71.29 (a) shows a three-variable Karnaugh map.  As seen it is an array of eight squares.  In

this case, A, B and C are used for the variables although any other three letters could be used.  The
value of A  and B are along the left side (notice the sequence carefully) and the values of C are across
the top.

The value of a given square is the values of A  and B at the left in the same row combined with the
value of C at the top in the same column.  For example, a square in the upper left corner has a value of

A B C  and a square in the bottom right corner has a value of A B C.  Fig. 71.29 (b) shows the product
terms that are represented by each square in the Karnaugh map.

Fig. 71.29

Fig. 71.28
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71.15. The Four-variable Karnaugh Map

Fig. 71.30 (a) shows a four-variable Karnaugh map.  As seen, it is an array of sixteen squares.  In
this case A, B, C and D are used for the variables.  The values of A  and B are along the left side, and
the values of C and D are across the top.  The sequence of the variable values may be noted carefully.

C D C D CD CD C D C D C D C D

A B A B A B C D A B C D A B C D A B C D

A B A B A B C D A B C D A B C D A B C D

AB  AB A B C D A B C D A B C D A B C D

AB AB A B C D A B C D A B C D A B C D

(a)          (b)
Fig. 71.30

The value of a given square is the values of A  and B at the left in the same row combined with the
values of C and D at the top in the same column.  For example, a square in the upper right corner has

a value A B C D  and a square in the lower left corner has a value A B C D .  Fig. 71.30 (b) shows the
standard product terms that are represented by each square in the four-variable Karnaugh map.

71.16. Square Adjacency in Karnaugh Map

We have already discussed a two-variable Karnaugh map, a three-variable Karnaugh map and a
four-variable Karnaugh map.  Now we shall discuss the concept of square adjacency in a Karnaugh
map.

It will be interesting to know that the squares in a Karnaugh map are arranged in such a way that
there is only a single-variable change between adjacent squares.  Adjacency is defined as a single-
variable change.  It means the squares that differ by only one variable are adjacent.  For example, in a

three-variable Karnaugh map shown in Fig. 71.29 (b), the A B C  square is adjacent to A B C  square,

the ABC  square and the ABC  square.  It may be carefully noted that square with values that differ

by more than one variable are not adjacent.  For example, the A B C  square is not adjacent to the

A B C  square, the ABC square, the A B C  square or the A B C  square.  In other words, each square
is adjacent to the squares that are immediately next to it on any of its four sides.  However, a square is
not adjacent to the  squares that diagonally touch any of its corners.

It may also be noted that squares in the top row are adjacent to the corresponding squares in the
bottom row and squares in the
outerleft column are adjacent to
the corresponding squares in the
outer right column.  This is called
“wrap around” adjacency because
we can think of the map as wrap-
ping around from top to bottom
to form a cylinder or from left to
right to form a cylinder.
Fig. 71.31 (a) and (b) shows the
square adjacencies with a three-
variable and a four-variable
Karnaugh maps respectively.

Notice the square adjacencies
in a four variable Karnaugh map : Fig. 71.31
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Here for example, the square A B C D  is adjacent to A B C D  square, A B C D  square, A B C D

square and A B C D  square.  Similarly A B C D  square is adjacent to A B C D  square, A B C D

square, ABCD  square and ABCD  square.

71.17. Mapping a Standard SOP Expression on the Karnaugh Map

Consider a SOP (sum-of-products) expression.  A B C  + A B C  + ABC  + A B C .  In order to
map this expression on the Karnaugh map,
we need a three variable Karnaugh-map
because the given expression has three
variables A, B, and C.  Then select the

first product term A B C  and enter 1 in
the corresponding square (i.e. the first row
and the first column) as shown in Fig.
71.32.

Similarly, for the second product term,

A B C  place a 1 in the second row and

first column.  Repeat this process for the

other two product terms, i.e. A B C  and

A B C .  The squares that do not have 1  are the squares for which the expression is 0.  Usually when

working with sum-of-products ex-
pressions, the 0s are left off the
map.

Example 71.21.  Map the fol-
lowing SOP expression on the
Karnaugh map : A B C  + ABC
+ ABC  + ABC.

 Solution.  Sketch a three vari-
able Karnaugh map as shown in
Fig. 71.33.  Select the first product
term A B C  and enter 1 in the cor-

responding square.  Similarly enter 1 for the
other product terms in the given SOP expres-
sion.  Check that number of 1s in the Karnaugh
map is equal to the number of product terms
in the given SOP expression.

   Example 71.22.  Map the following stan-
dard sum-of-products (SOP) expression on
a Karnaugh map :

A B C D  + A B C D  + A B C D  +

A B C D  + A B CD  + A B C D  +

A B C D  + ABCD

C C

A B

A B

A B

A B

1

1

1

1

A B C A C B B C+ B + A C + A

Fig. 71.32

Fig. 71.33

C C

A B

A B

A B

A B

1

1

1

1

A B A CC + BC + AB + ABC

Fig. 71.34

A B

A B C D

A B C D

C D C DC D C D

A B

A B

A B

1 1

1

1111

1

A DBC

ABCD

A CB D

ABCDAB DC

ABC D
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Solution. Sketch a four variable Karnaugh map.  Select the first product term A B C D  from the

given SOP expression and enter 1 in the corresponding square as shown in Fig. 71.34.  Similarly enter
1 for the other product terms in the given SOP expression.  Check that number of 1s in the Karnaugh
Map is equal to the number of product terms in the given SOP expression.

71.18. Mapping a Nonstandard SOP Expression on the Karnaugh Map
A nonstandard sum-of-products (SOP) expression is a one that has product terms with one or

more missing variables.  In such a case, Boolean expression must first be converted to a standard form
by a procedure explained in Art. 71.9.

Let us consider an example to illustrate the procedure for mapping a nonstandard SOP expression
on the Karnaugh map.  Suppose we have the SOP expression :

A AB ABC+ +
As seen, this expression is obviously not in standard form because each product term does not

have three variables.  The first term is missing two variables, the second term is missing one variable
and the third term is standard.  In order to convert the given nonstandard SOP expression to a
standard form, we multiply the first product term by B + B and C + C , and the second term by C + C .
Expanding the resulting expression, we get,

( ) ( ) ( )A B B C C AB C C ABC+ + + + +

= ABC A B C A B C A B C ABC A B C ABC+ + + + + +
Rearranging the expression for our convenience, we get

A B C A B C A B C ABC ABC A B C ABC+ + + + + +
This expression can be mapped on a three-variable Karnaugh map as shown in Fig. 71.35.

Fig. 71.35

71.19. Simplification of Boolean Expression Using Karnaugh Map

The process that results in an expression containing the minimum number of possible terms with
the minimum number of variables is called simplification or minimization. After the SOP (or the
Boolean) expression has been mapped on the Karnaugh map, there are three steps in the process of
obtaining a minimum SOP expression.  The three steps are : (a) grouping the 1s, (b) determining the
product term for each group and (c) summing the resulting product terms.

(a) Grouping the 1s : We can group the 1s on the Karnaugh map according to the following rules
by enclosing those adjacent squares containing 1s.  The objective is to maximize the size of the groups
and to minimize the number of groups.

C C

A B

A B

A B

A B 1

11

1 1

1

1

A B C A B A C A C B C B+ C + B + B C + A B + A + A C
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1. A group must contain either 1, 2, 4, 8 or 16 squares.  In the case of two-variable Karnaugh
map, 4 squares is the maximum group, for three-variable map, 8 squares are the maximum
group and so on.

2. Each square in the group must be adjacent to one or more squares in that same group but all
squares in the same group do not have to be adjacent to each other.

3. Always include the largest possible number of 1s in a group in accordance with rule 1.
4. Each 1 on the Karnaugh map must be included in at least one group.  The 1s already in a

group can be included in another group as long as the overlapping groups include non-
common 1s.

(b ) Determining the Product Term for each group :  Following are the rules that are applied to
find the minimum product terms and the minimum sum-of-products expression :

1. Group the squares that have 1s :  Each group of squares containing 1s creates one product
term composed of all variables that occur in only one form (either uncomplemented or comple-
mented) within the group.  Variables that occur both uncomplemented and complemented
within the group are eliminated.  These are known as contradictory variables.

2. In order to determine the minimum product term for each group, we need to look at the
standard methodology for three-variable and four-variable Karnaugh map respectively.
(i) For a three-variable K-map :  (1) for 1-square, group we get a three-variable product

term, (2) for a 2-square group, we get a two-variable product term, (3) for a 4-square
product term, we get a one-variable product term.

(ii) For a four-variable K-map : (1) For a 1-square group, we get a four-variable product
term, (2) for a 2-square group, we get a three-variable product term, (3) for a 4-square
group, we get a two-variable product term and (4) for a 8-square group, we get a one-
variable product term.

(c ) Summing the resulting product terms :  When all the minimum product terms are derived
from the Karnaugh map, these are summed to form the minimum sum-of-products expression.

Note :  In some cases, there may be more than one way to group the 1s to form the product terms.
Whatever be the way, the minimal expression must have the same number of product terms and each
product term,  the same number of Boolean variables.

The examples given below will help you to understand and apply the simplification of the SOP
expression using Karnaugh map.

Example 71.23.  Simplify the following Boolean expression using the Karnaugh mapping tech-
nique :

X  = A B A B C A B C A B C+ + +
Solution.  The first step is to map the given Boolean expression on the Karnaugh map.  Notice

that there are three variables A, B and C in the Boolean expression, therefore we need a three-variable
Karnaugh map.

The Boolean expression to be mapped is,
X  = A B A B C A B C A B C+ + +

Note that the given Boolean expression is a nonstandard SOP expression because the first

product term A B  has the variable C missing in it.  This can be converted into a standard SOP form

by modifying the expression as below.
X = .1A B A B C A B C A B C+ + +

= ( )A B C C A B C A B C A B C+ + + +          ...(C + C  = 1)

= A BC A B C A BC A B C A B C+ + + + ...(1)
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Equation (1) can be mapped on the Karnaugh map as shown
in Fig. 71.36.  In order to simplify the given expression, the 1s can be
grouped together as shown by the loop around the 1s.  The four 1s in

the first column are grouped together and the term we get is C .  This
is because of the fact that the squares within this group contain both

A  and A  and B and B , so these variables are eliminated.  Similarly,
the two 1s in the second row are grouped together and the term we get

is A B .  This is because of the fact that squares in this group contain

both C and C  which is eliminated.  Summing up the two-product
terms, the simplified expression is,

X = .AB C+
Example 71.24.  Simplify the following SOP expression using the Karnaugh mapping proce-

dure :

X  = A B C D A B C D A B C D A B C D A B C D ABCD+ + + + +
Solution.  First of all, notice that the given SOP expression is already in the standard from i.e. all

the product terms in the given
expression have all the four vari-
ables A, B, C and D.

Next sketch a four-variable
Karnaugh map.  Select the first
product term ( )A B C D from the
given expression and enter 1 in
the corresponding square as
shown in Fig. 71.37.  Similarly en-
ter 1 for the other product terms
in the given SOP expression to
complete the mapping.  In order
to simplify the given SOP expres-
sion, the 1s can be grouped to-
gether as shown by the loop
around the 1s.  The four 1s in the
second column are grouped together and the product term we get is C D.  This is because of the fact
that squares within this group contain both A  and A  and B and B , so these variables are eliminated.

The two 1s in the first and second columns can be grouped together.  This group contains both

D and D , so this variable is eliminated and the resulting product term is A B C .  Similarly the two 1s in

the second and third columns can be grouped together.  This group contains both C and C , so this
variable is eliminated and the resulting product term is ABD.

The resulting minimal or simplified SOP expression is obtained by summing up the three product

terms C D, A B C  and ABD as shown below :

X = ABD + AB C  + C D.

Example 71.25.  Simplify the following SOP expression  using the Karnaugh mapping technique.

X = BC D A B C D ABCD ABCD ABCD+ + + +
Solution. First of all, notice that the given SOP expression is in the nonstandard SOP form

because the first product term ( B C D ) has a variable A  or A  missing in it.  Let us convert the given
SOP expression into a standard SOP form as shown below :

Fig. 71.36

Fig. 71.37
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X = 1. B C D A B C D ABCD ABCD ABCD+ + +

= ( )A A B C D A B C D ABCD ABCD ABCD+ + + + + ...(� A  + A  = 1)

= AB C D A B C D ABCD ABCD ABCD ABCD+ + + + +
This expression can be mapped on to the four-variable

Karnaugh by entering 1 for each product term in the corre-
sponding square as shown in Fig. 71.38.

In order to simplify the SOP expression, the 1s can be
grouped together as shown by the loop around the 1s.  The
four 1s looped together form the first and second cloumns,

contain both A  and A  and D and D , so these variables

are eliminated and the resulting product term is B C .  Simi-
larly, the four 1s looped together form the second and the

third column contain both A  and A  and C and A , so these
variables are eliminated and the resulting product term is

BD.   The resulting simplified SOP expression is the sum of the product terms B C  and BD, i.e.,

X = B C  + BD

Example 71.26.  Fig. 71.39 shows a Karnaugh map of a sum-of-products (SOP) function.  Deter-
mine the simplified SOP function. (UPSC Civil Services 2000)

Fig. 71.39 Fig. 71.40

Solution.  The grouping of 1s is as shown in the Fig. 71.40.  Notice the “wrap around” four-square
group that includes the 1s on four corners of the Karnaugh map.  This group produces a product term

B D .  This is determined by observing that the group contains both A  and A  and C and C , so these

variables are eliminated.
Another group of four with “wrap-around” adjacency is formed form the top and the bottom rows

of the Karnaugh map.  This group overlaps with the previous group and produces a product term

B C .  This is determined by observing that this group contains both A  and A  and D and D , so these
variables are eliminated.

The remaining 1 is absorbed in a overlapping group of two squares.  This group produces a three-

variable term ACD .  This is determined by observing that this group contains both B and B , so this

variable is eliminated.  This resulting simplified SOP function is the sum of the product terms B D  +

B C  and ACD , i.e.

X = B D  + B C  + ACD

A B

C D C DC D C D

A B

A B

A B

1

1

1

1

1

1

1

Fig. 71.38
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71.20. Mapping Directly on Karnaugh Map from a Truth Table

It is possible to map directly on Karnaugh map from a truth table.  Recall that a truth table gives
the output of a Boolean expression for all possible input variable combinations.  Let us illustrate direct
mapping through an example of a Boolean expression and its truth table representation.

Let X  = A B C ABC ABC ABC+ + + .  Then its truth table can be indicated as shown in
Fig. 71.41 (a) and its Karnaugh mapping is shown in Fig. 71.41 (b).  Notice in the truth table that the
output X  is 1 for four different input variable combinations.

It is evident from the Fig. 71.41 (a) and (b) that truth table and Karnaugh map are simply different
ways to represent a logic function.

Fig. 71.41

Example 71.27.  Implement the following Boolean expression using minimum number of 3-input
NAND gates.

f (A, B, C,D) = Σ (1, 2, 3, 4, 7, 9, 10, 12) (UPSC Engg. Services 1991)

Solution.  The given Boolean function indicates that its output is 1 corresponding to the terms
indicated within the expression i.e., 1, 2, 3, 4, 7, 9, 10 and 12.  This is shown in Fig. 71.42 (a).  We can

map these values directly on to the four-variable Karnaugh map as shown in Fig. 71.42 (b).  In order
to simplify the Boolean expression represented on the Karnaugh map,  group the 1s as shown in the

Fig. 71.42 (b).  The group of two squares in the first coloum produces a product term B C D .  This is

determined by observing that the group contains both A  and A , so this variable is eliminated.

Another group of two squares in the second column produces term B CD.  The variable A  is elimi-

nated because the group contains both A  and A .

Another group of two squares in the third column produces the term A CD .  The variable B is

eliminated because the group contains both B and B . Still another group of two squares in the fourth

column produces the term BC D .  The variable A  is eliminated because the group contains both A

and A .  Thus the resulting simplified expression,

f (A, B, C,D) = B C D B C D AC D B C D+ + +
This can be implemented using 3-input NAND gate as shown in Fig. 71.43.
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Fig. 71.42

71.21. “Don’t Care” conditions

In digital systems design sometimes a situation arises in which some input variable conditions
are not allowed.  For example in a BCD (binary coded decimal) code, there are six invalid combina-
tions : 1010, 1011, 1100, 1101, 1110 and 1111.  Since these unallowed states will never occur in an
application involving the BCD code, they can be treated as “don’t care” terms with respect to their
effect on the output.  That is, for these “don’t care” terms either 1 or 0 may be assigned to the output.

Now, we shall discuss as how the “don’t care” terms can be used to advantage on the Karnaugh
map for simplifying the Logic equations.

Consider for example, a combinational circuit which products a ‘1’ output corresponding to a

Fig. 71.43
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BCD input equal and greater than 6.  The output is 0 corresponding to a BCD input less than 6.  The
truth table for this situation is as shown in Fig. 71.44 (a).

Inputs Output

A B C D X

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 1 → ABCD

0 1 1 1 1 → ABCD

1 0 0 0 1 → A B C D

1 0 0 1 1 → A B C D

1 0 1 0 X

1 0 1 1 X

1 1 0 0 X

1 1 0 1 X

1 1 1 0 X

1 1 1 1 X

(a) (b)
Fig. 71.44

We know that we can place 1s directly from the truth table on the
Karnaugh map.  Similarly we can place X  for the “don’t care” enteries
directly on the Karnaugh map as shown in Fig. 71.44 (b).  When group-
ing the 1s, Xs can be treated as 1s make a larger grouping or as 0s, if they
cannot be used to advantage Recall the larger the group of 1s the
simpler the resulting term will be.  Taking advantage of the “don’t care”
and using them as 1s, the resulting expression for the output is A  + BC.
However, if the “don’t cares” are not used as 1s, the resulting expres-
sion is AB C  + ABC .  Thus we can see the advantage of using “dont
care” terms to get the simplest logic expression.

Example 71.28.   Consider the Karnaugh map shown in Fig. 71.45. Determine the logic function
represented by the map and simplify it in the minimal form. (UPSC Engg. Services 1997)

Solution.  We know that when grouping the 1s, Xs can be treated as 1s to make a larger
grouping or as 0s if they cannot be used to advantage.
Recall, the larger the group of 1s, the simpler the result-
ing term will be.  Taking advantage of the Xs and using
them as 1s, the grouping of 1s and Xs is as shown in
Fig. 71.46.

Notice the “wrap-around” four-square group that in-
cludes the 1s and Xs on fours corners of the Karnaugh

map.  This group produces a product term B D .  This is
determined by observing that the group contains both

A  and A  and C and C , so these variables are elimi-
nated.  Another group of four squares containing 1s
and Xs around the centre of Karnaugh map is formed.

Fig. 71.45

A B

C D C DC D C D

A B

A B

A B

1

1

X

X

X

X X

X

1 1

1

Fig. 71.46
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This group produces a product term BD.  This is determined by observing that the group contains

both A  and A  and C and C , so these variables are eliminated.
Another group of four containing 1s and Xs is formed near the top right corner of Karnaugh map.

This group overlaps with the previous group and produces a product term A C.  This is determined by
observing that the group contains both B and B  and D and D , so these variables are eliminated.

The resulting simplified logic function is the sum of the three product terms : B D , BD and A C, i.e.,

X = B D  + BD + A C

71.22. Main Logic Families

Most digital systems are designed by combining various logic functions discussed in Chapter
19.  All these logic circuits are available in IC modules and are divided into many ‘families’.  Each
family is classified by abbreviations which indicate the type of logic circuit used.  For example,  RTL
means resistor-transistor logic.  We will discuss the following seven transistor logic families al-
though the first two are, at present, of historic interest only.

1. Resistance-transistor logic (RTL) :  it was the first family group of logic circuits to be
developed and packaged in IC form in early 1960s;

2. Diode-transistor logic (DLT) :  It followed RTL in late 1960s;
3. Transistor-transistor logic (TTL) OR (T2L) :  was introduced in the early 1970 s;
4. Schottky TTL :  was introduced to improve the speed of TTL;
5. Emitter-coupled logic (ECL) :  It is fastest logic line currently available;
6. Integrated-injection logic (I2L) :  It is one of the latest of the bipolar types of logic;
7. Complementary metal-oxide semiconductor (CMOS) :  It has the lowest power dissipation

of the currently-available logic circuits.
The various logic families discussed above posses different characteristics as detailed below.

71.23. Saturated and Non-saturated Logic Circuits
Those logic circuits in which transistors are driven into saturation are called saturated logic

circuits or simply saturated logic.  Those circuits which avoid saturation of their transistors are
designed non-saturated logic.

The disadvantage of saturated logic is the delay that occurs when the transistors is brought out
of saturation.  When a transistor is saturated, its base is flooded with carriers.  Even when base
voltage is switched off, the base remains flooded for some time till all carriers leave it.  The time
required by the carriers to leave the base is called saturation delay time (ts).  Obviously, saturated
logic circuits have low switching speeds whereas non-saturated type are much faster.  TTL is the
example of a saturated logic whereas ECL represents a non-saturated logic.

71.24. Basic Operating Characteristics and Parameters of Logic Families
When we work with digital ICs from different logic families, we should be familiar with, not only

their logical operation but also with the basic operational properties.  Following are the important
basic operational properties important from the subject point of view.

1. DC supply voltage. 2. TTL and CMOS logic levels 3. Noise immunity
4. Noise margin. 5. Power dissipation. 6. Propagation delay.
7. Speed-power product. 8. Loading and fan-out.
Now we will describe all the above operational characteristics one by one in the following pages.

71.25. DC Supply Voltage
The standard value of the dc supply voltage for TTL (i.e., transistor-transistor logic) and CMOS

(i.e., complementary metal-oxide semiconductor) device is + 5V .  For simplicity, the dc supply voltage
is usually omitted from the logic circuits.  But in practice, it is connected to the VCC or V DD pin of an IC
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package and the ground is connected to the GND pin of an IC package.  Both the voltage and ground
are distributed internally to all the logic gates with the package as shown in Fig. 71.47 (a).  The
connections for the single logic gate are as shown in Fig. 71.47 (b).

Fig. 71.47

71.26. TTL and CMOS Logic Levels
For TTL circuits, the range of input voltages, that can represent a valid LOW (logic 0) and a valid

HIGH (logic 1) is as shown in Fig. 71.48 (a).  As seen from this diagram, the range of input voltages that
can represent a valid LOW (logic 0) is from 0 to 0.8 V.  The LOW input voltage is indicated by the
symbol VIL.  The lower limit for VIL is represented by VIL(min) and the higher limit for VIL, by VIL(max) .  The
range of input voltages that can represent a valid HIGH (logic 1) is from 2 V to V CC (usually 5 V).  The
HIGH input voltage is indicated by symbol V IH.  The lower limit for V IH is represented by V IH(min) and
the higher limit for V IH by V IH(max).  Note that the range of values between 0.8 V and 2 V is called
indeterminate.  This means that when a input voltage is in this range, it can be interpreted as a HIGH
or LOW by the logic circuit.  Therefore TTL logic gates cannot be operated reliably when input
voltages are in this range.

Fig. 71.48

Fig. 71.48 (b) shows the range of TTL output voltages that can represent valid HIGH (logic 1) and
valid LOW  (logic 0).  As seen the range for logic 1 output ifs from 2.4 V to 5 V and logic 0 output is
from 0 to 0.4 V.  Note again that the range of values between 0.4 V and 2.4 V is indeterminate. Also
note that the output voltage for logic 1 is indicated by the symbol V OH.  The lower limit for VOH is
represented by VOH(min) and the higher limit for VOH by VOH(max).  Similarly the output voltage for logic
0 is indicated by the symbol VOL.  The lower limit for VOL is represented by VOL(min) and the higher
limit for VOL by VOL(max).
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It may be noted from Fig. 71.48 (a) and (b) that the minimum HIGH output voltage, V OH (min) is
greater than the minimum HIGH in put voltage V IH (min).  On the other hand, the maximum LOW output
voltage, V OL (min) is less than the maximum LOW input voltage, V IL(max).

The input and output  voltages for a device from HCMOS (i.e. High-speed CMOS) logic family for
V DD = 5 V as shown in Fig. 71.49 (a) and (b) respectively.

Fig. 71.49

Notice that the input and output voltage values in the HCMOS device are different from that of a
TTL device.  In a HCMOS device, VIL(max) is 1.5 V (its value is 0.8 V in TTL), VIH (min) is 3.5 V (its value
is 2 V in TTL), V OL (max) is 0.1 V (its value is 0.4 V is TTL), V OH (min) is 4.9 V (its value is 2.4 V in TTL).

71.27. Noise Immunity
The noise immunity of a logic circuit refers to the circuit’s ability to tolerate noise without causing

a false change in its output voltage.  The noise voltage is produced by stray electric and magnetic
fields on the connecting wires between logic circuits.  Sometimes, too much noise voltage cause the
voltage at the input of the logic circuit to drop below VIH (min) or rise above V IL (max).  This could produce
unpredictable operation in a logic circuit.

71.28. Noise Margin
A quantitative measure of a circuit’s noise immunity is called noise margin.  It is expressed in

volts.  There are two values of noise margin specified for a given logic circuit as described below.
1. The high level noise margin (V NH)
2. The low level noise margin (VNL)
These parameters are shown in Fig. 71.50 and are given by the equations,

V NH  = VOH (min) — V IH (min)

VNL  = VIL (max) — VOL (max)

Fig. 71.50
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Example 71.29.  Table shows the input/output voltage specifications for the standard TT
 family.

Parameter Min (V) Typical (V) Max (V)

VOH 2.4 3.4 —
VOL — 0.2 0.4
VIH 2.0 — —
VIL — — 0.8

Using these values, find (a) the maximum value of noise spike that can be tolerated when a
HIGH output is driving an input, (b) the maximum value of noise spike when a LOW output is driving
an input.

Solution.  The maximum value of the noise spike, when driven by a HIGH output,
VNH = VOH (min) − VIH (min) = 2.4 − 2.0 = 0.4 V

and the maximum value of the noise spike, when driven by a LOW output,
VNL = VIL (max) − VOL (max) = 0.8 − 0.4 = 0.4 V

It is observed that a TTL gate is immunte to 0.4 V of poise for both the HIGH and LOW input
states.

71.29. Power Dissipation

As a matter of fact, all logic gates draw current from the dc supply voltage for its normal
operation.  When the logic gate is in the HIGH output state, it draws an amount of current, ICCH, as
shown in Fig. 71.51 (a) and when in LOW output state, it draws an amount of current ICCL as shown
in Fig. 71.51 (b).

Fig. 71.51

The power dissipation of a logic gate is given by the product of the dc supply votage (V CC) and
the amount of current drawn from the suppy (i.e., ICCH or ICCL).  Thus power dissipation is given by :

PD = VCC . ICCH or VCC . ICCL

For example, if ICCH is 2.5 m A when V CC  is 5 V, the power dissipation,

PD = VCC . ICCH = 5 V × 2.5 mA = 12.5 mW.

Usually, the logic gate operates with the inputs, which keep on changing with time (i.e., the input
is pulsed).  Accordingly the output of a logic gate also switches back and forth  between HIGH and
LOW.  Because of this, the amount of current drawn from the dc supply also varies between ICCH and
ICCL.  In such a situation, we calculate the average power dissipation.  The average power dissipation
depends upon the duty cycle and is usually specified for a duty cycle of 50%, the output is HIGH half
the time and LOW the other half.  Therefore average supply current is :
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ICC =
2

CCH CCLI I+

and the average power dissipation is,

PD = VCC . ICC

Example 71.30.  A TTL logic gate draws 2 mA when its output is HIGH and 3.5 mA when its
output is LOW.  Calculate the average power dissipation if the supply voltage is 5 V and the logic
gate is operated on 50% duty cycle.

Solution.  The average supply current,

ICC =
2

CCH CCLI I+
 = 

2mA 3.5mA
2

+
 = 2.75 mA

∴ The average power dissipation,
PD = V CC . ICC = 5 r × 2.75 mA = 13.7 mW

71.30. Power Dissipation versus Frequency
Fig. 71.52 shows a graph of power dissipation versus fre-

quency for a TTL and a CMOS logic gate.  As seen from this
graph, the power dissipation in a TTL circuit is essentially con-
stant over its range of operating frequencies.  However, the power
dissipation in a CMOS circuit is frequency dependent.  That is, it
is extremely low under zero frequency (or dc) conditions.  But the
power dissipation increases as the frequency increases.  For ex-
ample, the power dissipation of a typical TTL logic gate is a con-
stant 2 mW.  On the other hand, power dissipation of typical
CMOS logic gate is 0.0025 mW under static (or dc) conditions
and 0.17 mW at 100 kHz.

71.31. Propagation Delay

When a signal passes (i.e., propagates) through a logic circuit, it always experiences a finite time
delay as shown in Fig. 71.53.  It shows that the change in output level occurs after a short time,
(called the propagation delay time), later than the change in input level that caused it.  There are two
propagation delay times specified for logic gates.

Fig. 71.53 Fig. 71.54

Fig. 71.52
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1. tPLH  – It is the time interval between a designated point on the input pulse and the corre-
sponding point on the output pulse when the output is changing from LOW to HIGH (or 0 to 1) as
shown in Fig. 71.54.

2. tPHL – It is the time interval between a designated point on the input pulse and the corre-
sponding pont on the output pulse when the output is changing from HIGH to LOW (or 1 to 0) as
shown in Fig. 71.54.

It may be noted that the propagation delay times are indicated in Fig. 71.54 with 50% points on the
pulse edges used as references.

The propagation delay time of a logic gate lim-
its its maximum operating frequency.  The greater
the propagation delay time of a logic gate, the lower
is its maximum operating frequency.  This means a
high speed logic gate is a one that has a small propa-
gation delay time.  For example, a logic gate with a
delay time of 2 ns is faster than a logic gate that has
a delay time of 10 ns.

71.32. Speed-Power Product
It provides a basis for comparison of logic cir-

cuits when the propagation delay and power dissi-
pation are important considerations in the selection of the type of logic family to be used in certain
application.  The speed power product is exdpressed in picojule (pJ). It may be noted carefully that the
lower the speed-product, the better is the value.  Typically the CMOS family has much lower value of
speed-power product as compared to the TTL logic family.  For example, a typical CMOS logic family
has a speed-power product of 1.5 pJ at 100 Hz while a typical TTL has speed-power product of 20 pJ.

71.33. Loading and Fan-out

When the output of any logic gate is connected to one or more inputs of other logic gates, a load
on the driving gate is created.  This is shown in Fig. 71.55.  Here the output of a logic gate (labeled as 1)
is connected to the inputs of 3 other logic gates (labeled as 2, 3, and 4).  Note that the logic gate labeled 1
is called a driving gate while the logic gates labeled as 2, 3 and 4 are called load gates.

In any logic family, there is a limit to the number of load gate inputs that a given logic gate can
drive.  This limit is called the fan-out of the logic gate.   Now we will study the loading and fan-out in
TTL and CMOS logic families in more detail.

Loading and fan-out in TTL family :  A TTL gate that acts as a driving gate sources (i.e.,
supplies) current to a load gate input in the logic HIGH state and sinks (i.e., receives) current from the
load gate in the logic LOW state.  Fig. 71.56 (a) illustrates the current sourcing and (b) shows current
sinking in the logic gates.

Fig. 71.56

Fig. 71.55
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Note that IIH  is the current supplied by the driving gate to the load gate when the input of the load
gate is HIGH similarly.  IIL is the current received by the driving gate from the load gate when the input
of the load gate is LOW.

As more and more number of load gates are connected to the driving gate, the loading on the
driving gate in-
creases.  The total
source current in-
creases with each
load gate input that is
added as illustrated in
Fig. 71.57.  As the
source current in-
crease, the internal
voltage drop of the
driving gate in-
creases V OH. This
causes the voltage
drop V OH to de-
creases.  If a large number of load gate inputs are connected, drops below V OH (min).  As a result of this,
HIGH level noise margin is  reduced, thus affecting the specified operating characteristics of the gate.
Moreover, as the total source current increases, the power dissipation of the driving gate increases.

The maximum number of load gate inputs that can be connected without affecting the specified
operational characteristics of the driving gate is called fan-out.  Its value is important for designing
logic circuits.  For example, the standard TTL has a fan-out of 10.  One input of the same logic family
as the driving gate is referred to as a unit load.  This we can also say that a standard TTL has a fan-
out of 10 unit loads.

The total sink current also increases with each load gate input that is added as shown in Fig. 71.58.
As this current increases, the internal voltage drop of the driving gate increases, causing VOL to increase.
If a large number of loads are added, VOL exceeds V OL (max) and the LOW-level margin is reduced.

As a matter of fact, in TTL,
the current sinking capability
(in the LOW state) is the limit-
ing factor in determining the
fan-out.
   Loading and fan-out in
CMOS :  Loading in CMOS logic
family differs from that in TTL.
It is because of the fact that
the field-effect transistors
used in CMOS logic family
present a predominantly ca-
pacitive load to the driving
gate as shown in Fig. 71.59.  In
this case, the limitations are the
charging and discharging times
associated with the output re-
sistance of the driving gate
and the input capacitance of
the load gates.

When the output of the driving gate is HIGH, the input capacitance of the load gate is charging
through the output resistance of the driving gate.  When the output of the driving gate is LOW, the

Fig. 71.57

Fig. 71.58
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capacitance is discharging.  When more and more number of load gate inputs are added to the driving
gate output, the total capacitance increases because the input capacitances effectively appear in
parallel.  This increase in capacitance increases the charging and discharging times.  As a result, the
maximum operating frequency of the logic gate is reduced.  Thus fan-out in a CMOS logic family
depends upon the operating fre-
quency.  The smaller the number of load
gate inputs, the greater the maximum
operating frequency.

71.34. RTL Circuit

It is a saturated logic.  It uses only
transistors and resistors as circuit ele-
ments and also resistances in the in-
put to each base.  This family is based
on the NOR circuit shown in Fig. 71.60.
All other members of the family are
made up of NOR cells or variations on
them.

Circuit Operation

We will assume ideal transistors.  When both inputs A  and B are 0 V  (or logic 0) both transistors
are turned OFF, hence point M  goes to + V CC  so that output is logic 1.

If either or both input terminals are at + V CC i.e. are high (or logic 1), one or both transistors would
be fully turned ON (i.e. saturate) thereby reducing the voltage of point N to almost 0 V.  Hence, output
would be at logic 0.

It is seen that the output is at logic 1 only when both inputs are at logic 0 — the NOR logic
functions as shown in Fig. 71.60
(b).

The RTL family has the fol-
lowing characteristics :

1. relatively slow speed,
2. low fan-out of 6 and a

fan-in of 4,
3. poor noise immunity,
4. expensive since resis-

tors are required to be fabricated,
5. cannot operate at speed

above 4 MHz.

Fig. 71.59

Fig. 71.60

Fig. 71.61
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71.35. DTL Circuit

It is a saturated logic because transistors between cut-off and saturation.  It was the next family
to be introduced after RTL.  It consists of diodes, resistors and transistors.  The basic gate of this
family performs NAND function.  As shown in Fig. 71.61 (a) the circuit basically consists of a diode
AND gate followed by a transistor inverter which leads to a NAND gate.

Circuit Operation
1. When both D1 and D2 have positive voltage applied to them (logic 1), neither conducts and

Q is turned ON by the current provided by V CC  through R1.  Since Q becomes saturated,
point C is brought to 0V (logic 0).  Hence output goes logic 0.

2. If either or both inputs are at 0V (logic 0), the associated diode will conduct driving point N
to ground i.e. 0V.  Since there is no base voltage for Q, it will be cut OFF thereby driving point
C and hence output to V CC i.e. logic 1.

It is seen that output is low (a logic 0) only when all inputs are high—the condition for a NAND
gate.

The DTL family is characterised by
1. relatively lower speed, 2. Comparatively better noise immunity,
3. propagation delay of 30 ns, 4. a fan-out of 5.

71.36. TTL Circuit
It is a saturated logic.  It is the most widely used circuit line since early 1970s because of its speed,

good fan-out and easy interface with other digital circuitry.  The unique feature of this circuit is that it
used multiple-emitter transistor at input which replaces the input diodes of the DTL.  Th number of
emitters is equal to the number of inputs of the logic circuit (limited to 8).  Since a multi-emitter
transistor is small in area than the diodes it replaces, the yield from a wafer is increased.   Moreover,
smaller area resultes in lower capacitance to the substrate, thereby wide selection of circuit modules
ranging from simple gates and flip-flops in SSI circuit series through various registers in computers in
MSI circuit series to micro-processor bit-slice chips in the LSI series.

Basic Circuit
The basic circuit of the TTL familyis the NAND gate cell shown in Fig. 71.62.  However, at present

NOR, OR and AND gate configurations have also been added to the series.

Circuit Operation
1. If both inptus A  and B are high (logic 1), E/B junction of Q1 is reverse-biased so that it has no

emitter current.  Hence Q1 is OFF.  However, its C/B junction is forward-baised supplying
base current to Q2 from V CC  via R1.  As a result transistor Q2 is turned fully ON (i.e. it
becomes saturated) driving point N to OV.  Hence, output is a logic 0.

2. When either or both inputs are at 0V  (logic 0), the associated E/B junction becomes forward-
biased.  The value of
R1 is so selected as to
ensure that Q is turned
fully ON.  The voltage
at point M  falls to 0V
with the result the base
current for Q2 is re-
duced to zero.  Hence,
Q2 is cut OFF driving
point N and the output
to logic 1.

Fig. 71.62
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Totem Pole Output

The basic circuited of Fig. 71.62 is never used in practice.  Its modified version with an added
output stage is in common use (Fig. 71.63).  This extra output stage is often known as totem-pole stage
because the three components Q3, Q4 and D are stacked one on top of the other in the manner of a
totem-pole.  The circuit action is as follows :

1. When Input is High
In this case, the two input terminals have positive voltage (logic 1).  the E/B junction is reverse-

biased because of which there is no
emitter current.  Hence, Q1 is OFF.
Since C/B junction of Q1 is forward-
biased, base current of Q2 flows from
V CC  through R1.  Hence, Q is turned
ON.  As a result, potential of point N
falls so much that Q2 is turned OFF.  At
the same time Q4 is turned ON by the
voltage drop across R3.  Now, when Q4
is ON, its collector potential (i.e.
potential of point C) is nearly that of its
emitter.  Hence, output is low i.e. at
logic 0.

In short, when inputs are at logic 1, Q1 is OFF, Q2 is ON, Q3 is OFF and Q4 is ON because of which
output because logic 0.

2. When Input is Low
If any of the two inputs or both are low (logic 0), Q1 turns ON and potential of its collector (point

M) falls.  Hence, Q2 is turned OFF, grounding its emitter and the base of Q4 so that Q4 is also turned
OFF.

Since N is at V CC, it turns Q3 ON.  The potential of point C is VCC minus drop in R4, Q3 and D.  Since
these drops do not amount to much, output is at logic 1.

It may be noted that when even-numbered transistors are ON, the odd-numbered ones are OFF
and vice-versa.

The function of diode D in Fig. 71.63 is to prevent both Q3 and Q4 from being turned ON
simultaneously.  If both were to be On at the same time, they would offer low immedance to teh suppy
which will draw excessive current and produce large noise ‘spikes’ in the output.  It may also be noted
that the addition of a pair of totem pole
transistor increases the operating speed
and output current capability of this cir-
cuit. The standard TTL-family has

1. greater speed then DTL,
2. less noise immunity (0.4 V),
3. average propagation delay per

gate of 9 ns,
4. average power dissipation of

10 mW,
5. a fan-out of 10 meaning one

output can drive 10 other TTL inputs,

Fig. 71.64 shows a pin-out of a BEL
7400 IC referred to as ‘quad (quadrupole).  2-input NAND gate chip’.  As seen, there are four separate

Fig. 71.63

Fig. 71.64
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2-input NAND gates of which any or all may be used at any point in time.  It is manufactured by Bharat
Electronics LTD.  (BEL) Bangalore, India.

71.37. TTL Sub-families
TTL has several sub-families having different speed and lower dissipation charcteristics as

detailed below :

1. 74L00 series—the letter L standing for low power consumption. It has an average power
dissipation of 1 mW per gate but an average propagation delay of  33 ns.

2. 74H00 series—the letter H standing for higher speed.  It has a propagation delay of 6 ns but
averge power dissipation of 23 mW/gate.

3. 74S00—the letter S representing Schottky.  It has the highest speed because its average
propagation delay is just 3 ns per gate.  However, its average power dissipation is 23 mW/
gate.

4. 74LS00—It is called low-power Schottky TTL.  It has an average propagation delay of 9.5 ns
and an average power dissipationof 2 mW.

5. 74AS00 series—The letter A  representing Advanced and S  stnading for schottky.  It is
called advanced schottky TTL series.  It is the fastest TTL series.

6. 74ALS00 series—It is called Advanced Low-power Schottky TTL series.  The 74ALS series
has the lower speed-power product and the lowest gate power dissipation of all the TTL
series.

7. 74F00 series —The letter F standing for fast.  This logic family uses a new IC fabrication
technique to reduce interdevice capacitances to achieve reduced propagation delays.  It has
a propagation delay of  3 ns and a power consumption of 6 mW.

Table 71.3 summarizes the important characteristics of the each of the TTL sub-families.
Table 71.3

             Characteristic TTL sub-family
74 74S 74LS 74AS 74ALS 74F

Propagation delay (ns) 9 3 9.5 1.7 4 3
Power Dissipation (mW) 10 20 2 8 1.2 6

Speed-power product (pJ) 90 60 19 13.6 4.8 18
Fan-out 10 20 20 40 20 33

71.38. ECL Circuit
The ECL also called current-mode logic (CML), has the highest speed of any of the currently-

available logic circuits.  It is primarily due to the fact that transistors never operate fully saturated or
cut-off.  That is why ECL is known as non-saturated logic.  The latest ECL series has propagation
delay time varying from 0.1ns to 0.8 ns.  However, power dissipation is increased since one transistor
is always in the active region.

Another feature of ECL is that it provides two outputs which are always complement of each
other (Fig. 71.65).  Itis so because the circuit operation is based on a differential amplifier.

This family is particularly suited to monolithic fabrication techniques because logic levels are
function of resistor ratios.

Circuit Operation
The basic circuit shown in Fig. 71.65 is combined OR/NOR circuit and is operated from a VEE  = −

5.2 V  supply.  A built-in constant-current source provides current to the emitters.  Strictly speaking,
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logic 1 is represented by − 0.9 V  (less negative) and logic 0 by − 1.75 V  (more negative).  Please note
that it is a positive  logic.  In negative logic, the functions would be AND/NAND.  A reference voltage
of − 1.29 V  is applied to the base of Q3 from a built-in temperature-compensated reference voltage
source (RVS).

Fig. 71.65

1. When both inptus are logical 0 i.e. −−−−−1.75 V
In this case, base potential of Q3 is less negative (or more positive) than the base potential of

either Q1 or Q2.  Hence, Q3 conducts whilst Q1 and Q2 do not.  Only enough base current is drawn by
Q3 from RVS so as to remain out of saturation.  The collector current of Q3 develops a voltage of − 1.0
V across R3 which makes Q4 to conduct.  Transistor Q4 gives an output voltage at the emitter of about
−1.0 − 0.7 = −1.7 V which represents logic 0.  Since collector potentials of Q1 and Q2 are nearly zero
(because they are cut off), the output voltage at the emitter of Q5 is 0 − 0.7 = −0.7 V which is a logic 1.
Obviously, the two outputs are complements of each other.

2. When either input A or B is at logical 1 i.e. −−−−−0.9 V
In that case, the associated transistor (either Q1 or Q2) is turned ON while Q3 is turned OFF.  The

collector potentials of Q1/Q2 and are opposite of the previous case.  Hence, now Q5 output is at logical
1 and Q4 output is at logical 0.

Typical characteristics of an ECL family are :
1. propagation delay time per gate of 0.3 ns (meaning extremely fast speed),
2. power dissipation of 25 mW,
3. fan-out of 25 to 50,
4. noise margin from about 0.2 to 0.25 V.
It will be interesting to know that ECL family of ICs does not include a wide range of general

purpose logic devices as do the TTL and CMOS logic families.  ECL does include complex, special
purpose ICs used in applications such as high-speed data transmission, high-speed memories and
high-speed arithmetic units.  The relatively low noise margins and high power drain of ECL are
disadvantages compared with TTL and CMOS.  Another drawback is its negative power supply
voltage and logic levels which are not compatible with those of other logic families.  This makes it
difficult to use ECL devices in conjunction with TTL and/or CMOS ICs.  Special level-shifting (also
called interface) circuits must be connected between ECL devices and the TTL (or CMOS) devices on
both input and output.

71.39. I2L Circuit

It is the latest entry into the bipolar saurated logic field.  It uses no biasing and loading resistors
at all! Resistors require lot of power and space on an IC chip.  Hence, their elimination results in higher
density circuits operating at much reduce power.  Because of its high speed and less power dissipa-
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tion, it is used in large computers.  Such circuits are also used where high packing density is of prime
consideration as in digital wrist watches.  I2L chips are capable of microwatt power dissipation yet can
provide high currents when necessary to drive
LED displays.  Another feature of I2L (integrated
injection logic) is that it is easy to fabricate.

Circuit Operation

I2L NOR logic circuit is shown in Fig. 71.66.
Here, transistors Q1 and Q2 act as current sources
to the bases of Q3 and Q4 respectively.

If A  input goes low, the current to the base of
Q2 will be shorted to ground which will result in
Q2 being turned OFF.  The input B controls Q4 in
a similar way.

If A  is high, base current flowing to Q2 will turn in ON, making output C low.  Same would be the
case when B is high.

It is obvious that output would be high only when both inputs A  and B are low.
The output would be low when either A  or B or both are high i.e. NOR logic function.

71.40. MOS Family
It does not use bipolar transistors but just Enhancement-only MOSFETs (Art. 71.1).  There are

two kinds of digital MOS circuits.

(a) one which uses MOSFETs of one polarity either all of N-type called NMOS or all of P-type
called PMOS but not both on the same chip,

(b) the other which employs both N-type and P-type MOSFETSs on the same chip.  It is called
comlementary MOS (CMOS).

The MOS family may be subdivided as under :

Since a FET requires small area, it is possible to fabricate a large number of MOS ciruits on a single
small chip.  Gating arrays with thousands of gates and flip-flops are manufactured in standard con-
tainers and are often used in IC memories and microprocessors.

Followings are same of the advantages of MOS ICs over the bipolar ICs (i.e. TTL, ECL etc.)
1. The MOS IC is relatively simple and inexpensive to fabricate.

2. The MOS device size is small and it consumers less power.  Because of the small size, the
MOS ICs can accommodate a much larger number of circuit elements on a single chip than
bipolar IC in the area of large scale integration.  This makes them especially well-suited for
complex ICs such as microprocessor, memory chips etc.

3. MOS digital ICs normally do not use the IC resistor elements that take up so much of the chip
area or bipolar ICs.

MOS Circuit

NMOSPMOS

Non-complementary MOS Complementary MOS or CMOS

Fig. 71.66
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The continuous improvement in MOS IC technology has led to the device that are faster than TTL
devices.  Consequently MOS devices (especially CMOS) have become dominant in the SSI (small-
scale integration) and MSI (medium-scale integration) market.

The major disadvantage of MOS devices is that they are susceptible to static-electricity damage.
Although we can minimize it by adopting proper handling procedures, yet TTL is still more durable for
laboratory experimentation.  As a result, we are likely to see TTL devices used in  education as long as
they are available.

71.41. PMOS Circuit

A PMOS NAND gate is shown in
Fig. 71.67 (a).  As seen, there are no
resistors in the circuit.  The gate con-
sists of two E only MOSEFETs Q1 and
Q2 as logic elements and the third one
Q3 as load resistors.  When −V DD (say
−12 V) is applied, MOSFETs will be
turned ON and when 0 V is applied
they would be turned OFF.  Hence,
with positive logic, 0 V would be 1
and − 12 V would be 0 since 1 is as-
signed to the most positive voltage.

Circuit Operation
1. If any of the two inputs A  or B is at logic 0 (i.e. − 12 V), the concerned MOSFET would turn

ON thereby offering a low resistance from drain to source thus causing the output to be
nearly 0V i.e. a logic 1.

2. The output can be at − 12 V i.e. logic 0 only when both inputs A  and B are at 0 V i.e. logic 1.
This is the NAND function as shown by the truth table of Fig. 71.67 (b).
Incidentally, the positive logic

NAND gate of Fig. 71.67 (a) would be
the negative logic NOR gate since the
two are identical.

71.42. NMOS Circuit

In Fig. 71.68 (a) is shown a two-
input NOR gate circuit consisting of
two MOSFETs Q1 and Q2 acting as logic
elements and Q3 as a load resistor.  For
positive logic, 0V  will be logic 0 and
positive voltge (+V DD) will be logic 1.

Circuit Operation

1. If any of the inputs A  or B is at logic 1, the corresponding MOSFET will conduct causing the
output to go low i.e. logic 0.

2. If both inpouts A  and B are at logic 0, then both MOSFETs will be OFF driving the output to
logic 1.

This is NOR function as shown by the trugh table of Fig. 71.68 (b).

Fig. 71.68

Fig. 71.67
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71.43.  CMOS Circuit
CMOS logic circuits use both PMOS and
NMOS devices in the same circuit.  It gives
the advnatage of drastic decrease in
power dissipation (12 nW per gate) and
increase in speed of operation.  In fact, it
has the lowest power dissipation  amongest
different logic families. It has very high
packing density i.e. larger number of cir-
cuits can be placed on a single chip.  As a
result, it is extensively used in VLSI cir-
cuits such as on-chip computers and
memory systems.  The recent silicon-on-
saphire MOS (SOSMOS) is 2 to 4 times
faster than the standard CMOS.  Hence,
they are being widely used for everything
from electronic watches and calculators to
micro processors.

Fig. 71.69 (a) shows a CMOS NOR circuit which has two N-channel MOSFETs Q1 and Q2 and tow
P-channel MOSFETs Q3 and Q4.  The two inputs A  and B switch between + VDD (logic 1) and ground
(logic 0).

Circuit Operation

1. Let A  = B = logic i.e. have positive voltage.  In that case, Q1 and Q2 are ON (closed switches)
but Q3 and Q4 are OFF and act as open switches as shown in Fig. 71.79 (b).  Henc, output C
is logic 0.

2. If either A  or b is at logic 1, then the associated N-channel
MOSFET (Q1 or Q2) is turned ON but the associated P-channel
MOSFET (Q3 or Q4) is turned OFF.  Since either Q3 or Q4 would
be OFF [Fig. 71.69 (b)], output C would be at logic 0.

3. When both A  and B are at logic 0, Q3 and Q4 would be ON but
Q1 and Q2 would be OFF—just the opposite of that in Fig. 71.69
(b).  Hence output C would be at logic 1 (remember, voltage
across an open equals the supply voltage—Art. 1.21.

The above logic represents a NOR function as shown in the truth table of Fig. 71.70.  It would be
observed from Fig. 71.69 that in each combination of A  and B, there is at least one open switch
between + V DD and ground. Hence, the gate draws only leakage current from supply for any static
state. However, when the gate switches from one level to another, some power is consumed becasue
two MOSFETs are partly ON at the same time.  Because of this reason, power dissipated by CMOS
circuit is a function of input signal frequency.  Higher the frequency, greater the power dissipation.

71.44. CMOS Sub-families and their characteristics
The CMOS family of ICs competes directly with TTL in the small and medium-scale integration.

As CMOS technology has produced better and better performance characteristics, it has gradually
taken over the field that has been dominated by TTL for so long.  As a matter of fact, TTL devices will
be around for a long time, but more and more new equipment is using CMOS logic circuits. These
days, the CMOS ICs provide all the logic-functions that are available in TTL  Some  special-purpose
functions provided in CMOS ICs are not provided even by TTL.  Before we look at the various CMOS

Fig. 71.69
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Fig. 71.70



Boolean Algebra and Logic Families 2625

subfamilies, let us define few terms that are used when ICs from different families or series are to be
used together or as replacements for one another.

(a ) Pin-to-pin Compatible :  Two ICs are said to be pin-to-pin compatible when three pin
configurations are the same.  For example, pin 14 on both ICs is V CC supply. Pin 7 on both is ground
etc.

(b ) Functionally Equivalent :  Two ICs are said to be functionally equivalent when the logic
function they perform are exactly the same.  For example, both contain four two-input AND gates, or
two-input NAND gates etc.

(c ) Electrically compatible :  Two ICs are said to be electricaly compatible when they can be
connected directly to each other without taking any special measures to ensure proper operation.

Let us now study the different CMOS subfamilies.

1. 5000/14000 series :   The CMOS 4000 series or the improved 4000 B is the oldest series and
was first introduced by RCA.  This series is functionally equivalent to 14000 series from
Motorola.  The CMOS devices in 4000/14000 series have a very low power dissipation and
can operate over a wide range of supply voltage (i.e. from 3 to 15 V).  These devices are very
slow as compared to TTL and other CMOS subfamilies.  The 40H00 series was designed to be
faster than 4000 series.  It did overcome some of the speed limitations, but it is still much
slower than LSTTL series.  The 4000 series have very low output current capability.  The
devices in 4000 series are not pin-compatible or electrically compatible with any TTL series.

2. 74C00 series :  This is pin-compatible as well as functionally equivalent to TTL devices
having the same device number.  For example, 74C04 is a HEX inverter that has the same pin
configuration as the TTL 7404 HEX inverter IC.  The performance characteristics of 74C00
series are the same as those of 4000 series.

3. 74HC/HCT00 series :  The letter H/HC is standing for high-speed CMOS series.  This
series has a speed which is 10 times faster than of 74LS00 series devices.  It has also a
higher current capability than that of 74C00 series.  The 74HC/HCT00  series ICs are
pin-compatible with and functionally equivalent to TTL ICs with the same device number.
This series has become the most widely used series.

4. 74AC/ACT 00 series :  This series is referred as advanced CMOS logic.  It is functionally
equivalent to the TTL series but not pin-compatible.

5. 74AHC00 series :  This series is referred to as advanced high-speed CMOS logic.  It is
faster, and haslower-power dissipation.  The devices in this series are 3 times faster and can
be used as direct replacements for HC series devices.

6. 74-BiCMOS series :  These days, the IC manufacturers have developed a new logic series-
called BiCMOS logic.  This series combines the best features of bipolar and CMOS logic i.e.
low power characteristics of CMOS and high speed characteristics of bipolar circuits.
BiCMOS ICs are available only in those functions that are used in microprocessor interfac-
ing and memory applications such as latches, buffers, drivers and transceivers.

7. 74-Low Voltage series :  A new series of logic using a nominal supply voltage of 3.3 V has
been developed to meet the extremely low power design requirements of battery powered
and hand held devices.  These ICs are being designed into the circuits of notebook comput-
ers, mobile radios, hand-held video games, telecommunication equipment, personal digital
assistant (PDA) and high performance work station computers.

Table 71.4 shows some of the common Low-voltage families identified by the suffixes as
indicated :
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Table 71.4

Suffixes Low-voltage series

LV Low-voltage HCMOS

LVC Low-voltage CMOS

LVT Low-voltage technology

ALVC Advanced Low-voltage CMOS

HLL High speed Low-power Low-voltage

The power consumption of CMOS logic ICs decreases approximately with the square of the
supply voltage.  On the other hand, the propagation delay increases slightly at this reduced
voltage.  However the speed is restored and even increased by using finer geometry and
sub-micron (<1µm) CMOS technology that is tailored for low-power and low-voltage appli-
cations.

8. 74 AHC/AHCT series :  This is an enchanced version of 74 HC/HCT00 series.  It provides
superior speed and low power consumption.  The 74AHC series devices have half the static
power consumption, one-third the propagation delay, high output drive current, and can
operate at V CC of 3.3 to 5 V.

Table 71.5 shows a comparison of the important characteristics of the CMOS logic families.  It is
evident from this table that the devices from 74AHC/AHCT series has the lowest propagation delay
and the smallest value of power dissipation.

Table 71.5

S. No. Characteristic CMOS logic family
4000 B 74 HC/HCT 74 BiCMOS 74 AHC/AHCT

1. Propagation 50 8 2.9 3.7
delay (ns)

2. Power 0.001 0.0025 0.0003 − 7.5 0.000009
dissipation
static (mW)

3. Speed-power 105 15 0.00087 to 22 —
product (pw-s)

Tutorial Problems No. 71.1

1. Prove the following identities :

(i)  AB AB A+ = (ii)  =A AB A B+ + (iii)  ( ) ( ) =A B A B A+ +
2. Simplify the following Boolean expressions :

(i)  A A C (ii)  ABCD + ABD(iii)  ABCD + A B C D
[(i) 0,  (ii) ABD,  (iii) ACD]

3. Simplify the following Boolean functions :

(i)  A A B AB+ + (ii)  A B A B AB A B+ + (iii)  (A B + C) (A B + D)

(iv)  ( )A B C A B C+ + (v)  [ ( )]A B C AB AC+ + (vi)  (A  + B) . (A  + C)

[(i) A + B (ii) 1 (iii) AB + CD (iv) A (v) AB (vi) A + B.C (vii) B ]

4. Simplify the following Boolean expressions :
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(i)  A B C A B C A B C+ + (ii)  A C B C A B C A B C+ + +

(iii)  AD A B C B C D A C D A B C D+ + + +

(iv)  A B D A B C D A B C D A B C D+ + +

[(i) A (B + C) (ii) B + A C  (iii) AD + +A B A C  (iv) A B D + A D + C D ]

5. Use truth tables to verify the following identities :

(i)  .A B A B+ = (ii)  A + BC = (A  + B) (A  + C) (iii)  ( ) =A A B AB+
6. Write the logic equation for the switching circuit of Fig. 71.71. [A (B + C + D + E]
7. Write down the logical expression which describes the working of the circuit of Fig. 71.72.

[AB (CD)]

Fig. 71.71 Fig. 71.72

 8. Simplify the following Boolean expressions :

(i) y = +ABC AB C AB C A C B AB+ + +

(ii) y = ABC D ABCD ABC ABD CD+ + + + [(i) AC B+   (ii) AB + CD]

9. Design a logic circuit whose output is HIGH only when majority of inputs A, B and C are LOW.

10. Determine the Boolean expression for the logic circuit shown in Fig. 71.73.  Simplify the Boolean
expression using Boolean Laws and De Morgan’s theorem.  Redraw the logic circuit using the simpli-
fied Boolean expression.

Fig. 71.73

11. Determine the output, X  of a logic circuit shown in Fig. 71.74.  Simplify the output expression
using Boolean Laws and theorems.  Redraw the logic circuit with the simplified expression.

BCD AC( + )
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Fig. 71.74

12. Consider the logic circuit shown in Fig. 71.75.  Determine the Boolean expression at the
circuit output X , simplify it. Using the simplified expression, redraw the logic circuit.

( )A B + C

Fig. 71.75

13. Fig. 71.76 (a) shows a three-variable Karnaugh map.  Group the 1s and hence obtain the
minimized Boolean expression. ( )AB + BC + A B C

Fig. 71.76

14. Fig. 71.76 (b) shows a four-variable Kamaugh-map.  Group the 1s and hence obtain the
minimized Boolean expression. ( )A B + A C + ABD

15. A truth table has output 1s for these inputs : ABCD = 0011, ABCD = 0110, ABCD = 1000 and
ABCD = 1100, and 0s for the other inputs.  Draw the Karnaugh map and find the simplified
Boolean equation for the truth table. (A )C D + A B CD + ABC D

16. Determine the minimized expression for the Karnaugh map shown in Fig. 71.77 (a).

( )B C + BD + BC
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Fig. 71.77

17. Determine the simplified Boolean expression for the Karnaugh map shown in Fig. 71.77 (b).

(UPSC Engg. Services 1995) ( )A C + A D + ABC

1. Boolean algebra is essential based on
(a) symbols (b)  logic
(c) truth (d) numbers

2. The first person who used Boolean algebra for
the design of relay switching circuits was
(a) Aristotle (b)  Boole
(c) Shannon (d) Ramanujam

3. Different variables used in Boolean algebra can
hvae values of
(a) 0 or 1 (b) low or high
(c) true or false (d) On or OFF.

4. According to the algebra of logic, ( )A A+  equals
(a) A (b) 1

(c) 0 (d) AA .
5. According to the absorptive Laws of Boolean

algebra , expressioin (A  + A B) equals
(a) A (b) B
(c) AB (d) A

6. When we demorganize A B , we get

(a) AB (b) A B+
(c) A B+ (d) AB .

7. The dual of the statement (A  + 1) = 1 is
(a) A  . 1 = A (b) A  . 0 = 0
(c) A  + A  = A (d) A . A = 1.

8. The expression ABC can be simplified to
(a) . .A B C (b) A B + BC + CA

(c) A B + C (d) A B C+ + .
9. While obtaining minimal sum-of-products ex-

pression,
(a) all don’t cares are ignored
(b) all don’t cares are treated as logic 1s
(c) all don’t cares are treated as logic 0s

(d) only such don’t cares that aid minimiza-
tion are treated as logic 1s.

10. In a saturated bipolar logic circuit, transistor
operate
(a) in deep cut-off   (b) over active  region
(c) in saturation
(d)  just short of saturation

11. Saturated logic circuits have inherently
(a) short saturation delay time
(b) low switching speed
(c) higher power dissipation
(d) lower noise immunity.

12. Noise margin is expressed in
(a) decibel (b) watt
(c) volt (d) phon

13. DTL family employs
(a) resistors and transistors
(b) diode and resistor
(c) diode and transistors
(d) diodes, resistors and transistors.

14. The chief advantage of Schotty TTL logic fam-
ily is its least
(a) power dissipation   (b) propagation de-
lay
(c) fan-in                      (d) noise immunity.

15. The main advantage claimed for ECL family
oflogic gates is its
(a) very large fan-in
(b) use of negative power supply voltage
(c) extremely low propagation times
(d) least power dissipation.

16. Special feature of an I2L logic circuit is that it
(a) uses ony high-value resistors

OBJECTIVE TESTS – 71
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(b) dissipates negligible power
(c) is a bipolar saturated logic
(d) is easy to fabricate
(e) uses no biasing and loading resistors.

17. A unique advantages feature of CMOS logic
family is its
(a) use of NMOS circuits
(b) power dissipation in nanowatt range
(c) speed
(d) dependence on frequency for power dis-

sipation.
18. CMOS circuits are extensively used for on-

chip computers mainly because of their ex-
tremely
(a) low power dissipation
(b) large packing density
(c) high noise immunity
(d) low cost.

19. The main advantage of a CMOS logic family
over the TTL family is its
(a) much reduced power
(b) increased speed of operation
(d) extremely low cost
(d) series base resistor

20. CMOS logic family uses only
(a) MOSFETs and resistors
(b) NMOS circuits
(c) MOSFETs       (d) bipolar transistors.

21. Power is drawn by a CMOS circuit only when
(a) its output is high (b) its output is low
(c) it switches logic levels
(d) in static state.

22. The most obvious identifying feature of a TTL
gate is its
(a) large fan-out    (b)  high power dissipation
(c) interconnected transistors
(d) multiemetter input transistor.

23. In digital circuits shottky transistors are pre-

ANSWERS

  1. (b)   2. (c)   3. (a)   4. (b)   5. (a)   6. (c)   7. (b)    8. (d)   9. (d) 10. (c) 11. (b) 12. (c)

13. (d) 14. (b) 15. (c) 16. (e) 17. (b) 18. (b) 19. (a) 20. (c) 21. (c) 22. (d) 23. (a) 24. (a)

25. (b) 26. (d) 27. (d) 28. (d) 29. (b) 30. (a)

ferred over normal transistor because of their
(a) lower propagation delay
(b) higher propagation delay
(c) lower power dissipation
(d) higher power dissipation

24. A unique operting feature of ECL circuit is its
(a) very high speed
(b) high power dissipation
(c) series base resistor
(d) compatibility with other logic series.

25. The fan-in a logic gate refers to the number of
(a) input devices that can be connected
(b) input terminals         (c) output termi-
nals
(d) circuits output can drive

26. Which of the following statements regarding
ICs is not correct,
(a) ECL has the least propagation delay
(b) TTL has the largest fan out
(c) CMOS has the biggest noise margin
(d) TTL has the lowest power consumption.

27. The Boolean equation for NOR gate is

(a) AB  = C (b) A B+  = C

(c) A  + B = C (d) A B+  = C.
28. The Boolean equation for a NAND gate is

(a) A B+  = C (b) AB  = C
(c) A  + B = C (d) A B+  = C

29. The logic function of an invertor is

(a) B = A (b) B = A

(c) B = A (d) None of these
30. The simplified form of the Boolean expression

( . ) ( . . )Y A BC D A D B C= + + can be written as

(a) . . .A D B C D+ (b) . .AD B C D+

(c) ( )( . )A D B C D+ + (d) . .A D BC D+
(GATE; 2004)
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