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70.1. Definition of a Logic Gate
A logic gate is an electronic circuit which makes logic decisions.  It has one output and one or

more inputs.  The output signal appears only for certain combinations of input signals.  Logic gates
are the basic building blocks from which most of the digital systems are built up.  They implement the
hardware logic function based on the logical algebra developed by George Boole which is called
Boolean algebra in his honour.  A unique characteristic of the Boolean algebra is that variables used
in it can assume only one of the two values i.e. either 0 or 1.  Hence, every variable is either a 0 or a 1.

These gates are available today in the form of various IC families.  The most popular families are:
transistor-transistor logic (TTL), emitter-coupled logic (ECL), metal-oxide-semiconductor (MOS) and
complementary metal-oxide-semiconductor (CMOS).

In this chapter, we will consider the OR, AND, NOT, NOR, NAND, exclusive OR (XOR) and
exclusive NOR (XNOR) gates along with their truth tables.

70.2. Positive and Negative Logic

In computing systems, the number symbols 0 and 1 represent two possible states of a circuit or
device.  It makes no difference if these two states are referred to as ON and OFF, CLOSED and OPEN,
HIGH and LOW PLUS and MINUS or TRUE and FALSE depending on the circumstances. Main point
is that they must be symbolized by two opposite conditions.

In positive logic, a 1 represents
1. an ON circuit 2. a CLOSED switch 3. a HIGH voltage

4. a PLUS sign 5. a TRUE statement
Consequently, a 0 represents
1.  an OFF circuit  2.  an OPEN switch  3. a LOW voltage  4. a MINUS sign  5. a FALSE statement.
In negative logic, just opposite conditions prevail.

Suppose, a digital system has two voltage levels of 0V and 5V.  If we say that symbol 1 stands for
5V and symbol 0 for 0V, then we have positive logic system.  If, on other hand, we decide that a 1
should represent 0 V and 0 should represent 5V, then we will get negative logic system.

Main point is that in positive logic, the more positive of the two voltage levels represents the 1
while in negative logic, the more negative voltage represents the 1.  Moreover, it is not essential that
a 0 has to be represented by 0V although in some cases the two may coincide.  Suppose, in a circuit,
the two voltage levels are 2V and 10V.  Then for positive logic, the 1 represents 10V and the 0
represents 2V (i.e. lesser of the two voltages).  If the voltage levels are − 2V and − 8V, then, in positive
logic, the 1 represents − 2V and the 0 represents − 8V (i.e. lesser of the two voltages).

Unless stated otherwise, we will be using only positive logic in this chapter.

70.3. The OR Gate

The electronic symbol for a two-input OR gate is shown in Fig. 70.1 (a) and its equivalent
switching circuit in Fig. 70.1 (b).  The two
inputs have been marked as A  and B and the
output as X . It is worth reminding the reader
that as per Boolean algebra, the three vari-
ables A , B and X  can have only one of the
two values i.e. either 0 or 1.

Logic Operation
The OR gate has an output of 1 when

either A or B or both are 1. Fig. 70.1
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In other words, it is an any-or-all gate because an output occurs when any or all the inputs are
present.

As seen from Fig. 70.1 (b), the lamp will light up (logic 1) when
either switch A  or B or both are closed.

Obviously, the output would be 0 if and only if both its inputs are
0.  In terms of the switching conditions, it means that lamp would be
OFF (logic 0) only when both switches A  and B are OFF.

The OR gate represents the Boolean equation  A  + B = X

The meaning of this equation is that X  is true when either A  is true
or B is true or both are true. Alternatively, it means that output X  is 1
when either A  or B or both are 1.

The above logic operation of the OR gate can be summarised with the help of the truth table given
in Fig. 70.2.  A truth table may be defined as a table which gives the output state for all possible input
combinations.  The OR Table 70.1 gives outputs for all possible A B inputs of 00, 01, 10 and 11.

We may interpret the truth table as follows:

When both inputs are 0 (switches are OPEN), output X  is 0 (lamp is OFF).  When A  is in logic
state 0 (switch A  is OPEN) but B is in logic state 1 (switch B is CLOSED), the output X  is logic state
1 (lamp is ON).  Lamp would be also ON when A  is CLOSED and B is OPEN.  Of course, lamp would be
ON when both switched are CLOSED. It is so because an OR gate is equivalent to a parallel circuit
in its logic function.

Another point worth remembering is that the above OR gate is called inclusive OR gate because
it includes the case when both inputs are true.

70.4. Equivalent Relay Circuit of an OR Gate
In Fig. 70.3, the relay contacts have been

wired in parallel.  When +5V is applied to A ,
relay K1 is energised and pulls M down thereby
closing the contact.  Hence, supply voltage of
+5V appears at the output X .

Similarly, when +5V are applied to input B,
K2 is energised and pulls N down thereby bring-
ing X  in contact with S.  Of course, when both A
and B are at +5V, X  is at +5V.  Incidentally, when
inputs at A  and B are 0, X  is also 0.

70.5. Diode OR Gate

Fig. 70.4. shows the diode OR gate consist-
ing of two ideal diodes D1 and D2 connected in parallel across the output X .

1. When A  is at +5V, D1 is forward-biased and hence
conducts.  The circuit current flows via R dropping
5V across it.  In this way, point X  achieves potential
of +5 V.

2. When + 5V is applied to B, D2 conducts causing
point X  to go to +5 V.

3. When both A  and B are +5V, the drop across R is 5V
because voltages of A  and B are in parallel.

A B X

0 0 1

0 1 0
1 0 0
1 1 1

Table 70.1

Fig. 70.2

Fig. 70.3

Fig. 70.4
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Again, point X  is driven to +5 V.

4. Obviously, when there is no voltage either at A  or B, output X  remains 0.

70.6. Transistor OR Gate

Fig. 70.5 illustrates a possible tran-
sistor OR gate consisting of three inter-
connected transistorsQ1, Q2, and Q3
supplied from a common supply Vcc = +5
V.

1. When +5 V is applied to A , Q1
is forward-biased and so it conducts.  As-
suming that Q1 is saturated, entire V cc =
5 V drops across R1 thus causing N to
go to ground.  This, in turn, cuts off Q3 thereby causing X  to go to V cc i.e. + 5V.

2. When +5 V is applied to B, Q2 conducts thereby driving N to ground i.e. 0V. With no forward
bias on its base, Q3 is cut-off thus driving X  again to Vcc i.e. +5 V.

3. If both inputs A  and B are grounded, Q1 and Q2 are cut-off driving N to +5 V.  As a result, Q3
becomes forward-biased and conducts fully.  In that case, entire V cc drops across R2 driving M and
hence X  to ground.

70.7. OR Gate Symbolizes Logic Addition
According to Boolean algebra, OR gate performs logical addition.  Its truth table can be written as

given below:

It must be clearly understood that ‘+’ sign in Boolean algebra does not stand for
the addition as understood in the ordinary or numerical algebra.  In symbolic logic,
the ‘+’ sign indicates OR operation whose rules are given above.  In logic algebra, A
+ B = X  means that if A  is true OR B is true, then X  will be true.  It does not mean here
that sum of A and B equals X.  The other symbols used for ‘+’ sign are U and V .
Hence, the above equation could also be written as AUB = X  or AV B = X .

The meaning of the last three logic additions is that output is 1 when either input A  or B or both
are 1.  The first addition implies that output is 0 only when both inputs are 0.

The meaning of the ‘+’ sign often becomes clear from the context as shown below:

1 + 1 = 2 — decimal addition
1 + 1 = 10 — binary addition
1 + 1 = 1 — OR addition

We can put the above OR laws in more general
terms

A + 1 = 1
A + 0 = A

A + A = A — not 2 A
(i ) A + 1 = 1
As we know, A  can have two values: 0 or 1. When A  is 0, then we have 0 + 1 = 1 as shown in

Fig. 70.6 (a).

When A  = 1, then the above expression becomes : 1 + 1 = 1 as shown in Fig. 70.6 (b),  Hence, we
find that irrespective of the value of A.

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 1

Fig. 70.5

Fig. 70.6
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A  + 1 =  1

(ii ) A + 0 = A
If A  = 0, then 0 + 0 = 0 i.e. output is 0 which is

correct and is shown in Fig. 70. 7 (a).  The output is
what the value of A  is.
      As shown in Fig. 70.7 (b), when A  = 1, output is
1 because 1 + 0 = 1.  Again, output is what the
value of A is.

(iii ) A + A = A
With A  set to 0, the output is 0 because 0 + 0 = 0 as
shown in Fig. 70.8 (a).

With A  set to 1, the output is 1 because 1 + 1
= 1 as shown in Fig. 70.8 (b).  Obviously, the out-
put in both cases is A .

70.8.  Three Input OR Gate

The electronic symbol for a 3-input (fan-in of 3) inclusive OR gate is shown in Fig. 70.9.  As is
usual in logic algebra, the inputs A , B, C as well as the output X  can have only one of the two values
i.e. 0 or 1.

Truth Table

It is shown in Table 70.2.  Following points are worth noting:

1. The number of rows in the table is 23 = 8 i.e. there are eight ways of
combining the three inputs. In general, the number of horizontal rows
is 2n where n is the number of inputs.

2. In first column A , logic values alternate between 0 and 1 every four rows twice.

3. The second input column B alternates between 0 and 1 every two rows four times.

4. The third input column C alternates between 0 and 1 every other row eight times.

The truth table symbolizes the Bool-
ean equation A  + B + C = X  which means
that output X  is 1 when either A or B or
C is 1 or all are 1.  Alternatively, X  is
true when either A  or B or C is true or all
are true.

vvhh
Its electronic symbol is shown in Fig.

70.10 (a) and its equivalent switching cir-
cuit in Fig. 70.10 (b).

In this gate, output is 1 if its either
input but not both, is 1.  In other words, it
has an output 1 when its inputs are different.  The output is 0 only when inputs are the same.

To put it a bit differently, this logic gate has output 0 when inputs are either all 0 or all 1.

Fig. 70.9

A B C X

0 0 0 0
0 0 1 1
0 1 0 1

0 1 1 1
1 0 0 1
1 0 1 1

1 1 0 1
1 1 1 1

Table No. 70.2

Fig. 70.7

Fig. 70.8
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This gate works on the Boolean equation A  ⊕  B = X

The circle around plus (+) sign is worth noting.
The circuit is also called an inequality comparator or detector because it produces an output

only when the two inputs are different.
Explanation
The inclusive OR gate exemplifies the everyday usage of the word OR which stands for one or the

other or both.  Take the following statement:
To qualify for a competition, you might have to subscribe to a magaine OR belong to a club.

Obviously, there is no bar on your doing both.  But now take exclusive statement:
You can be rich OR you can be poor.
Obviously, you cannot be both at the same time.
The change-over switching circuit of Fig. 70.10 (b) simulates the exclusive OR (XOR) gate.

Switch positions A  and B will individually light up the lamp but a combination of A  and B is not
possible.

The truth table for a 2-input XOR gate is given in Table No.70.3.  It is instructive to compare it with
that for an inclusive OR gate (Table 70.1).

70.10. The AND Gate
The electronic (or logic) symbol for a 2-input AND gate is shown in Fig. 70.12 (a) and its equiva-

lent switching circuit in Fig. 70.12 (b).  It is worth reminding the readers once again that the three
variables A , B, C can have a value of either 0 or 1.

Logic Operation
1. The AND gate gives an output only

when all its inputs are present.
2. The AND gate has a 1 output when

both A  and B are 1.  Hence, this gate
is an all-or-nothing gate whose out-
put occurs only when all its inputs
are present.

3. In True/False terminology, the out-
put of an AND gate will be true only
if all its inputs are true.  Its output would be false if any of its inputs is false.

The AND gate works on the Boolean algebra
A  × B = X    or   A . B = X or A B = X

It is a logical multiplication and is different from the arithmetic multiplication.  Often the sign ‘×’
is replaced by a dot which itself is generally omitted as shown above.  The logical meaning of the
above equation is that

Fig. 70.10 Fig. 70.11

Fig. 70.12
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1. output X  is 1 only when both A  and B are 1.

2. output X  is true only when both A  and B are true.
As seen from Fig. 70.12 (b), the lamp

would be ON when both switches A  and
B are closed.  Even when one switch is
open, the lamp would be OFF.  Obvi-
ously, an AND gate is equivalent to a
series switching circuit.

Truth Table Fig. 70.13 shows truth
table for a  2-input AND gate and Fig.
70.14 gives the same for a 3-input AND
gate.

As seen, X  is at logic 1 only when all
inputs are at logic 1, not otherwise.  The
procedure for writing down the first
three columns is the same as explained
in Art. 70.8 earlier.

70.11. Equivalent Relay Circuit of an AND Gate

The AND gate can be physically realized with the help of relay circuit shown in Fig. 70.15. Here,
the two relay contacts have been wired in series.

When +5 V is applied to both input circuits,
relays K1 and K2 are energized thereby pulling M
and N downwards which brings C in contact with
the supply point S.  Hence, X  goes to +5 V.

It is obvious that energizing only one relay
will not make X  go to + 5 V.

70.12. Diode AND Gate

It is shown in Fig. 70.16.  Its logical operation
is as under :

1. When A  is at 0 V, diode D1 conducts and
the supply voltage of +5 V drops across R.  Consequently, point N and hence point X  are driven to 0
V.  Therefore, the output C is 0.

2. Similarly, when B is at 0 V, D2 conducts thereby driving N and hence X  to ground.
3. Obviously, when both A  and B are at 0 V, both diodes

conduct and, again, the output X  is 0.

4. There is no supply current and hence no drop across R
only when both A and B are at +5 V. Only in that case, the
output X  goes to supply voltage of +5 V.

70.13. Transistor AND Circuit

It is shown in Fig. 70.17.  When both A  and B are at +5 V, the
two transistors Q1 and Q2 conduct.  The current so produced
drops the supply voltage of +5 V across R1 thereby driving
point N and hence base of Q3 to ground or 0V.  This cuts off Q3 so that X  goes to supply voltage of
+ 5 V.

Table 70.4

Fig. 70.13

A B C X

0 0 0 0

0 0 1 0
0 1 0 0
0 1 1 0

1 0 0 0
1 0 1 0
1 1 0 0

1 1 1 1

Table 70.5

ABC = X
Fig. 70.14

A B X

0 0 0
0 1 0

1 0 0
1 1 1

Fig. 70.15

Fig. 70.16
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Obivously, there is an output at X  only when
there is an input at A  and B.

If either A  or B is at 0 V, then Q1 or Q2 will be
cut off and no drop will take place across R1.
Hence, point N will go to supply voltage of +5V.
Consequently, Q3 will conduct and whole of sup-
ply voltage will be dropped across R2.  As a
result, point M and hence output X  will go to 0 V.

70.14. AND Gate Symbolizes Logic
Multiplication

According to Boolean algebra, the AND gate
performs logical multiplication on its inputs as
given below:

     0.0 = 0
0.1 = 0

1.0 = 0
1.1 = 1

In general, we can put the laws of Boolean multi-
plication in the following form:

A.1 = A A.0 =0
A.A = A — not A 2

The above indentities can be verified by giving
values of 0 and 1 to A .

1. A.1 = A When A =0
then 0.1 = 0 —Fig. 70.18 (a)
When A = 1

then 1.1 = 1         —Fig. 70.18 (b)
It is seen that in each case, output has the same value as that of A .

2. A.0 = 0
When A = 0
then 0.0 = 0 —Fig. 70.19 (a)
When A = 1

then 1.0 = 0 — Fig. 70.19 (b)
It is seen that output is always 0 whatever the

value of A.
3. A.A = A
When  A = 0,  then 0.0 = 0  —  Fig 70.20 (a)

      When A = 1,   then 1.1 = 1 —  Fig. 70.20 (b)
It is seen that output always takes on the value
of A.

Fig. 70.17

Fig. 70.18

Fig. 70.19

Fig. 70.20
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70.15. The NOT Gate
It is so called because its output is NOT the same as its input.  It is also called an inverter because

it inverts the input signal.  It has one input and one
output as shown in Fig. 70.21 (a).  All it does is to
invert (or complement) the input as seen from its
truth table of Fig. 70.21 (b).

The schematic symbol for inversion is a small
circle as shown in Fig. 70.21 (a).  The logical symbol
for inversion or negation or complementation is a
bar over the function to indicate the opposite state.

Sometimes, a prime is also used as A ′. For ex-

ample, A  means not-A. Similarly,

(A + B)  means the complement of (A

+ B).

70.16. Equivalent Circuits for a
    NOT Gate

The relay circuit of Fig. 70.22 (a) is a
physical realization of the complemen-
tation operation of the Boolean algebra.
When +5 V is applied to input A , K is
energised and opens the normally-
closed contact thereby driving output
X  to 0 V.  Of course, when A  is at 0V, X

has the supply voltage of +5 V applied to it because the relay contact is normally closed.
In the equivalent transistor circuit of Fig. 70.22 (b) when +5V is applied to A , the transistor

will be fully turned ON, drawing maximum collector current. Hence, whole of VCC = 5 V will drop across
R thereby sending X  to 0 V.  With 0 V applied at A , the transistor will be cut OFF and the output X ,
therefore, will go to V CC i.e. + 5 V.  Obviously, in each case, output is the opposite of input.

70.17. The NOT Operation

It is a complementation operation and its sym-
bol is an overbar.  It can be defined as under:

As stated earlier, 0  means taking the negation
or complement of 0 which is 1.

0 = 1

1 = 0
It should also be noted that

complement of a value can be taken
repeatedly.  For example,

1 0 1= = or 0 1 0= =
As seen double complementa-

tion gives the original value as
shown in Fig. 70.23.

Fig. 70.21

Fig. 70.23

Fig. 70.24

Fig. 70.22
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Example 70.1.  Find the Boolean equation for the output X of Fig. 70.24 (a).  Evaluate X when
(i) A = 0, B = 1, C = 1  (ii)  A = 1, B = 1, C = 1. [Computer Engg., Pune Univ. 1991]

Solution.  The output of the AND
gate is A B.  It then becomes one of
the inputs for the 2 input OR gate.
When A B is ORed with C, we get
(AB + C).
∴ X  = A B + C

—Fig. 70.24 (b)

(i ) X  = 0.1 + 1 = 0 + 1 = 1
—Art 70.7

(ii ) X  = 1.1 + 1 = 1 + 1 = 1
Example 70.2.  Find the Boolean expression for the output of Fig. 70.25 (a) and evaluate it

when (i) A = 0, B = 1, C = 1,  (ii)  A = 1, B = 1, C = 0.

Solution.  The output of the OR gate is (A  + B).
Afterwards, it becomes the input of the AND gate.
When ANDed with C, it becomes (A  + B).C.

∴ X = (A  + B).C —Fig. 70.25 (b)

(i ) X = (0 + 1).1 = 1.1 = 1
(ii ) X = (1 + 1).0 = 1.0 = 0

Example 70.3.  Find the Boolean expression for
the output of Fig. 70.26 and compute its value when
A = B = C = 1 and X = 0.

(Digital Computations, Punjab Univ. 1990)
Solution.  The circuit is made up of
three AND gates.  Obviously, it is
equivalent to a single 4-input AND
gate i.e. an AND gate with a fan-in of
four.

Output of the first gate is A B,
that of the second is ABC and that
of the third is ABCD.  Hence, final
output is X  = ABCD.

Substituting the given values, we get

X =  1.1.1.0 = 1.1.0 = 1.0 = 0
Example 70.4.  Find the Boolean expression for the output X of Fig. 70.27 (a) and compute its

value when

(i ) A  = 0, B = 1

(ii ) A  = 1, B = 0

Solution.  As seen, one of the inputs to
the OR gate is inverted i.e. A  becomes A  as
shown in  Fig. 70.27 (b).  Hence, output is

given by X  = A  + B

Fig. 70.28

Fig. 70.27

Fig. 70.26

Fig. 70.25
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(i ) X = 0 1+  = 1 + 1 = 1 (ii )  X   =  1 0+  = 0 + 0 = 0

Example 70.5.  What is the Boolean expression for the output X of Fig. 70.28 (a) ? Compute the
value of X when

(i) A = 0, B = 0 (ii)  A = 1, B = 1
Solution.  As seen, in this case, both inputs to the OR gate have been inverted.  Hence as shown

in Fig. 70. 28 (b), the inputs become

and A B . Therefore, Boolean
expression for the output becomes

X  = + A B .

(i ) X = 0 0+ = 1 + 1 = 1

(ii ) X = 1 1
− −

+ = 0 + 0 = 0

Example 70.6. Write down the Boolean
equation for the output X of Fig. 70.29 (a).
Compute its value when

(i) A  = 0,  B = 0
(ii) A  = 0, B = 1

(iii) A  = 1,  B = 0
(iv) A  = 1, B = 1

Solution.  As seen, inputs to the AND gate
are A and B [Fig. 70.29 (a)].  The output of the AND gate is A.B.  However, this output is inverted by
the second inverter connected in the output.  Hence, final output equation is

X  = A B

(i) X  = 0.0 1.0 0= =  = 1

(ii) X  = 0.1 1.1 1= =  = 0

(iii) X  = 1.0 0.0 0= =  = 1

(iv) X  = 1.1 0.1 0= =  = 1
While evaluating expressions of the above type, you must remember the following two points :
1. take the NOT i.e. inversion of the individual term first.

2. When a NOT or inversion is applied to more than one term (like 1.0), you should work out the
OR (or AND) operation first and then take the NOT of the result so obtained.

70.18. Bubbled Gates

A bubbled gate is one whose inputs are NOTed or inverted i.e. it is a negated gate. Fig. 70.30 (a)
shows an AND gate whose both input are inverted.

In practice, instead of this logic symbol, the one shown in Fig.
70.30 (b) is widely used.  As seen, the inverter triangles have been
eliminated and the two small circles or bubbles have been moved to the
inputs of the gate. Such a gate is called a bubbled AND gate, the
bubbles acting as a reminder of the inversion or complementation that
takes place before ANDing the inputs.

It would be shown later that a bubbled AND gate is equivalent to
a NOR gate.

A B X

0 0 1
0 1 0

1 0 0
1 1 0

Table 70.6

Fig. 70.32

Fig. 70.30

Fig. 70.29

Fig. 70.31
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Similarly, a bubbled OR gate is equivalent to a AND gate.

70.19. The NOR Gate

In fact, it is a NOT-OR gate.  It can be made out of an OR gate by connecting an inverter in its
output as shown in Fig. 70.31 (a).

The output equation is given by

X   =  A B+
A NOR function is just the reverse of the OR function.

Fig. 70.33 Fig. 70.34

Logic Operation
A NOR gate will have an output of 1 only when all its inputs are 0.  Obviously, if any input is 1,

the output will be 0.  Alternatively, in a NOR gate, output is true only when all inputs are false.

The truth table for a 2-input NOR gate is shown in Fig. 70.32.  It will be observed that the output
X  is just the reverse of that shown in Fig. 70.2.

The equivalent relay circuit for a NOR gate is
shown in Fig. 70.33.

It is seen that the lamp glows under 00 input con-
dition only but not under 01, 10, 11 input conditions.

The transistor equivalent of the NOR gate is
shown in Fig. 70.34.  As seen, output X  is 1 only when both transistors are cut-off i.e. when A  = 0 and
B = 0.  For any other input condition like 01, 10 and 11, one or both transistors saturate forcing point
X  to go to ground.

70.20. NOR Gate is a Universal Gate
It is interesting to note that a NOR gate can be used to

realize the basic logic functions : OR, AND and NOT.  That is
why it is often referred to as a universal gate.  Examples are
given below:

1. As OR Gate
As shown in Fig. 70.35, the output from NOR gate is A  + B.

By using another inverter in the output, the final output is in-
verted and is given by X  = A  + B which is the logic function of a
normal OR gate.

Fig. 70.36

Fig. 70.35
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2. As AND Gate
Here, two inverters have been used, one for each input (Fig. 70.36).  The inputs have, thus, been

inverted before they are applied to the NOR gate.

The output is A B+  which can be proved (with
the help of De Morgan's theorem) to be equal to
AB.

Incidentally, we could have used a bubbled
NOR gate for the above purpose.

3. As NOT Gate

    The two inputs have
been tied together as
shown in Fig. 70.37 (a). The
output is A A+  which can
be proved to be equal to A
with the help of De
Morgan’s theorem.  Instead
of the first symbol, the sec-
ond symbol shown in Fig.

70.37 (b) is widely used where only single
input has been used.

Here is a different way of making OR and
AND gates.  Fig. 70.38 (a) shows how we can
use NOR gates to produce an OR gate. Simi-
larly, Fig. 70.38 (b) shows the formation of an AND gate from three NOR gates.  Knowledge of De
Morgan's theorem is needed to
understand their logic operation.

70.21. The NAND Gate

It is, in fact, a NOT-AND gate.
It can be obtained by connecting
a NOT gate in the output of an
AND gate as shown in Fig. 70.39.
Its output is given by the Bool-
ean equation.

This gate gives an output of 1 if its both inputs are not 1. In other words, it gives an output 1 if
either A or B or both are 0.

      The truth table for a 2-input NAND gate
is given in Fig. 70.40.  It is just the opposite
of the truth for AND gate.  It is so because
NAND gate performs reverse function of an
AND gate.

      The equivalent relay circuit of a NAND
gate is shown in Fig. 70.41.

The NAND gate is used to design an interior lighting system of a car
such that the light is switched off only when both doors are shut

Fig. 70.37

Fig. 70.38

Fig. 70.39

interior light
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It is seen that lamp glows under input conditions of 00, 01, 10 but not under 11 input condition

Fig. 70.40 Fig. 70.41

when both switches A  and B are ON.  The diode-
transistor equivalent of a NAND gate is shown in
Fig. 70.42.

It is seen that point N would be driven to
ground when either D1 or D2 or both D1 and D2
conduct.  It represents input conditions of 10, 01
and 11*.  Under such conditions, Q is cut off and
hence X  goes to V CC meaning logic 1 state.  Only
time X  is 0 is when A  = 1 and B = 1 (i.e. input
voltages at A  and B are at +5V) so that N is +5 V
and Q is saturated.

70.22. NAND Gate is a Universal Gate
NAND gate is also called universal gate be-

cause it can perform all the three logic functions
of an OR gate, AND gate and inverter as shown
below.

As shown in Fig. 70.43 (a), a NOT gate can
be made out of a NAND gate by connecting its
two inputs together.  When a NAND gate is used as a NOT gate, the logic symbol of Fig. 70.43 (b) is
employed instead.

The use of two NAND gates to produce an AND gate is shown in Fig. 70.44 (a).
Similarly, Fig. 70.44 (b) shows how OR gate can be made out of three NAND gates.  The OR

function may not be clear from the figure because we need De Morgan’s theorem to prove that A B
= A + B.

Fig. 70.44

* In this case, V
A
 = V

B
 = 0 V

Fig. 70.42

Fig. 70.43



Logic Gates 2569

70.23. The XNOR Gate

It is known as a not-XOR gate i.e. XOR  gate.
Its logic symbol and truth table are shown in
Fig. 70.45.

Its logic function and truth table are just the
reverse of those for XOR gate (Art 70.9).

This gate has an output 1 if its both inputs
are either 0 or 1.  In other words, for getting an
output, its both inputs should be at the same
logic level of either 0 or 1.  Obviously, it produces no output if its two inputs are at the opposite logic
level.

70.24. Logic Gates at a Glance
In Fig. 70.46 is shown the summary of all the 2-output logic gates considered so far along with

their truth tables.

Following points should prove helpful when writing these truth tables:
1. In first column A , logic values alternate between 0 and 1 every two rows
2. In second column B, logic values alternate every other row

3. Column X  is filled up as per the logic function it performs

Fig. 70.46

4. Truth tables for NOR, NAND and XNOR (or XOR )
gates are just the opposite of those for OR, AND and
XOR gates.

Example 70.7.  An electrical signal is expressed as
101011.  Explain its meaning.  If this signal is applied to a
NOT gate, what would be the output signal ?

Fig. 70.47

Fig. 70.45

Fig. 70.48
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            Solution.  The signal represents binary number 1010112.  It is electrically represented as a train
of pulses.  Taking positive logic, 1 will represent high voltage and 0 will represent low (or zero) voltage
as  shown in Fig. 70.47.

When such a signal is applied to a NOT gate, it would be inverted or complemented as shown in
Fig. 70.48.

The NOT output will represent the binary
number 0101002.

Example 70.8.  Two electrical signals rep-
resented by A = 101101 and B = 110101 are
applied to a 2-input AND gate.  Sketch the
output signal and the binary number it repre-
sents.

Solution.  The pulse trains corresponding
to A  and B are shown in Fig. 70.49.

Remember that in an AND gate, C is 1 only
when both A  and B are 1.  It is an all-or-nothing
gate. The output can be found in different time intervals as under :

1. 1st interval : 1 + 1 = 1
2. 2nd interval : 0 + 1 = 0
3. 3rd interval : 1 + 0 = 0
4. 4th interval : 1 + 1 = 1

5. 5th interval : 0 + 0 = 0
6. 6th interval : 1 + 1 = 1
Hence, ouput of the AND gate is 1001012.  It is sketched in Fig. 70.49.

Example 70.9.  Convert the Boolean expression (AB + C) into a logic circuit using different
logic gates.            (Computer Engg. Pune Univ. 1992)

Solution.  In such cases, it is best to start with the output and work towards the input.  As seen,
C has been ORed with A B.  Hence, the output gate must be a 2-input OR gate as shown in Fig. 70.50
(a).

Now, term A B is an AND function.  Hence, we need an
AND gate with inputs A  and B.  The complete logic circuit is
shown in Fig. 70.50 (b).

Example 70.10.  Design logic hardware based on the

Boolean expression (A  + B C ).

Solution.  We will work from output to input.  It is seen
that the last gate is a 2-input OR gate with inputs of A  and

B C . It is shown in Fig. 70.51 (a).

Since B  has been ANDed with C, it requires an AND
gate as shown in Fig. 70.51 (b).  For inversion of B, a NOT
gate has been used as shown in Fig. 70.51 (c).

Example 70.11.  Design a logic circuit whose output is given by the Boolean expression (A +

B). AB . (Computer Science, Allahabad Univ. 1992)
Solution.  Working from output to input, we find that the output gate has to be a 2-input AND gate

with inputs of (A  + B) and AB .  The first step of the circuit design is shown in Fig. 70.52 (a). It is also
seen that the input to the entire circuit consists of A  and B only.

Fig. 70.49

Fig. 70.50
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Fi.g 70.51 Fig. 70.52

The input of (A  + B) has been
obtained with the help of an OR
gate as shown in Fig. 70.52 (b).

Finally, a NAND gate is con-
nected in parallel with the OR
gate for getting its inputs of A  and
B and thereafter for supplying an

output of AB .  The complete cir-
cuit is shown in Fig. 70.52 (c).

70.25. Digital Signals
  Applied to Logic

Gates

A binary digital signal ap-
plied to a logic gate is nothing else
but the application of a time se-
quence of 1’s and 0’s.  The re-
sponse of AND and OR gates to
various periodic digital signals is
shown in Fig. 70.53.

Fig. 70.54 shows how two
waveforms can be ORed by
using two input gates.

70.26. Applications of
Logic Gates

Range of application of the logic gates is very wide but the main headings would include.

1. to build more complex devices like binary counters etc.,
2. for decision making in automatic control of machines and various industrial processes,
3. in calculators and computers,
4. in digital measuring techniques,

Fig. 70.53
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5. in digital processing of communica-
tions,

6. in musical instruments, games and do-
mestic appliances etc.

Sometimes it is more convenient to show
the digital signals or pulse waveforms without
the x- and y-axes.  The examples below will fol-
low this practice.

Example 70.12.  Fig. 70.55 shows an OR gate with two input waveforms.  What is the resulting
output waveform ?

Solution.  Remember that the output of an OR gate is 1 when either or both inputs are 1.  There-
fore, we can sketch the output wave form, C as shown in Fig. 70.56.

Example 70.13.  For a three-input OR gate shown in Fig. 70.57 determine the output waveform.

Solution.  Remember the output of a three-input OR gate is 1 when one or more of the inputs are

Fig. 70.54

Fig. 70.56 Fig. 70.57

Fig. 70.58

Fig. 70.55
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1.  Therefore, we can sketch the output waveform, D as shown in Fig. 70.58.

Example 70.14.  Fig. 70.59 shows a 2-input AND gate with waveforms A and B.  Sketch the
resulting output waveform.

Solution.  Remember the AND gate produces an output 1 only when all its inputs are present.
Thus the output of AND gate is 1
when both A  and B are 1.  Its output
is 0 when any of its inputs is 0.  Us-
ing this concept, we can sketch the
output waveform as shown in Fig.
70.60.

Example 70.15.  For a 3-input
AND gate with waveforms A, B and
C at its inputs as shown in Fig. 70.61, determine the resulting output waveform.

Fig. 70.61

Solution.  A 3-input AND gate produces an output 1 only when all the three inputs A , B and
C are 1.  Its output is 0 when any one of three inputs is 0.  Using this concept, the resulting output
waveform is as shown in Fig. 70.62.

Example 70.16.  Fig. 70.63 shows the
two waveforms applied to the NOR gate in-
puts.  Sketch the resulting output waveform.

Solution.  Remember, a NOR gate will
have an output of 1 only when all its inputs
are 0.  Obviously, if any input is 1, the output
will be 0.  Using this concept, we can sketch
the output waveform as shown in Fig. 70.64.

Example 70.17.  Sketch the output waveform for a 3-input NOR gate shown in Fig. 70.65.
Showing the proper time relationship to the inputs.

Fig. 70.63

Fig. 70.62

Fig. 70.60

Fig. 70.59
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Solution.  Remember, a 3-input NOR
gate will have an output of 1 only when all
the three inputs A , B and C are 0.  Obvi-
ously if any one of the three inputs A , B
and C or all are 1, the output will be 0.

Using this concept, we can sketch the
output waveform as shown in Fig. 70.66.

    Example 70.18.  Fig. 70.67 shows the two
waveforms A and B applied to the NAND gate
inputs.  Determine the resulting output wave-
form.
     Solution.  Remember, the output of NAND
gate is 1 if either A  or B or both are 0.  Using
this concept, we can sketch the output wave-
form as shown in Fig. 70.68.

Example 70.19.  Sketch the output waveform for a 3-input NAND gate shown in Fig. 70.69

   Solution.  Remember, the output of a 3-in-
put NAND gate is 1 only if either any one of the
inputs A, B and C or all are 0.  Using this con-
cept, we can sketch the output waveform as
shown in Fig. 70.70.

Fig. 70.64

Fig. 70.65

Fig. 70.66

Fig. 70.67

Fig. 70.68

Fig. 70.69
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Example 70.20.  The waveforms A and B are ap-
plied as an input to the XOR and XNOR gate as shown
in Fig. 70.71.  Determine the output waveforms of
these logic gates.

Solution.  In exclusive–OR (XOR) gate, output is
1 if its either input but not both, is 1.  In other words,
it has an output 1 when its inputs are different.  The

output is 0 only when inputs
are the same.  Using this con-
cept, we can sketch the XOR
output waveform as shown
in Fig. 70.72.

    In XNOR gate, output is 1
if its both inputs are either 0

or 1.  It produces 0 output if its two inputs are at the opposite logic level.  Using this concept, we can
sketch the XNOR output waveform as shown in Fig. 70.72

70.27. Combinational Logic Circuit
It is a circuit built from various logic gate combinations.  The circuit possesses a set of inputs,

a memoryless logic network to operate on the inputs and a set of outputs as shown in Fig. 70.73 (a).
The output from a combinational logic circuit depends solely on the present input values and not on
the previous ones.  Moreover, output combinational networks are used to make logical decisions and
control the operation of different circuits in digital electronic systems.  For a given set of input
conditions, the output of such a circuit is the same. Consequently, a truth table can fully describe the

Fig. 70.73

operation of such a circuit. Examples of such a circuit are : decoders, adders, multiplexer and
demultiplexers etc.

Fig. 70.70

Fig. 70.71

Fig. 70.72
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70.28. Sequential Logic Circuits

Such circuits have inputs, logic network, outputs and a memory as shown in Fig. 70.73 (b). Their
present output depends not only on their present inputs but also on the previous logic states of the
outputs.

Examples of such circuits are a variety of latches and flip-flops.  Sequential logic circuits may be
either synchronous or asynchronous.  The synchronous sequential circuits are built to operate at a
clocked rate whereas asynchronous ones are without clocking.

70.29. Adders and Subtractors

The logical gates discussed so far can be used for performing arithmetical functions like addi-
tion, subtraction, multiplication and division in electronic calculators and digital instruments.  In the
central processing unit (CPU) of a computer, these arithmetic functions are carried out by the
arithmetic and logic unit (ALU).  The logic functions used generally are XOR, OR and AND.  We will
consider the following:

1. Half Adder—it is 1-bit adder and carries out binary addition with the help of XOR and AND
gates.  It has two inputs and two outputs.

2. Full Adder—It has three inputs and can add three bits at a time. It is made up of two half
adders and one OR gate.
These adders can also perform subtraction by the method of 1’s and 2’s complements.

3. Half Subtractor—it uses one XOR and one AND gate.
4. Full Subtractor—it employs two half subtractors and one OR gate.

70.30. Half Adder

It can add 2 binary digits at a
time and produce a 2-bit data i.e.
sum and carry according to the bi-
nary addition rules (Art. 70.10).

Block Diagram

It is shown in Fig. 70.74.  As
can be seen, it has two inputs for
applying the two binary digits to be
added.  As is well known, binary
addition of two bits always produces 2-bit output data i.e. one SUM and one CARRY .  For example,
(1 + 1) gives a sum of 0 and a carry of 1.  Also, (0 + 0) gives the sum 0 and carry 0. That is why the
adder has two outputs : one for SUM and the other for CARRY .

Truth Table 70.7 lists the two columns of input, one of
SUM and one of CARRY .  The SUM output has the same logic
pattern as when A  is XORed with B.  In fact, to add it to XOR.  Also,
the CARRY output has the same logic pattern as when A  is ANDed
with B.  That is why a half-adder can be formed from a combination
of one XOR gate and one AND gate as shown in Fig. 70.75.

The circuit is called half-adder because it cannot accept a
carry-in from previous additions. For that purpose, we need a 3-
input adder called full-adder.

Fig. 70.74
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Fig. 70.75

Table 70.7
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Incidentally, the logical equations for the SUM and CARRY  are S = A ⊕  B and C = A .B

Fig. 70.76

70.31. Full Adder

As shown in the block diagram of Fig. 70.76, it has three inputs and two outputs.  It can add 3
digits (or bits) at a time.  The bits A  and
B which are to be added come from the
two registers and the third input comes
from the carry generated by the previ-
ous addition. It produces two outputs;
SUM and CARRY-OUT.

The truth table 70.9 gives all pos-
sible input/output relationships for the
full adder.  A  and B are the inputs from
the respective digits of the registers to be added and Ci is the input for any carry generated by the
previous stage.  The SUM output gives binary addition of A , B and Ci.  The other output generates
the carry C0 to be added to the next stage.

The full-adder can be constructed from two half-adders and one OR gate (Fig. 70.77).

Working.  Let us illustrate, with the help of two examples, how this full adder adds three bits.

Fig. 70.78 Fig. 70.79

(i) A = 1, B = 1, Ci = 0

The full adder with these three inputs is shown in Fig. 70.78.  First half adder gives a sum of 0 and
a carry of 1. The second HA gives a sum of 0 with a carry of 0.  The final output is : SUM 0, CARRY
1.  As we know from the rules of binary addition, 1 + 1 + 0 =102 (i.e decimal 2).

A

B FA

Sum
S

Carry
Out
Co

Input Output

A

0

0

0

0

1

1

1

1

S

0

1

1

0

1

0

0

1

Co

0

0

0

1

0

1

1

1

Ci

0

1

0

1

0

1

0

1

B

0

0

1

1

0

0

1

1

Ci
Carry

In

Carry
Co

Ci SumSum

Sum

Carry

Carry

HA

HA

A

B

Fig. 70.77

HA HA

HA HA

11 1

1 1

1

1 1

1

1 1
0 00 0

0
00

1

1



2578 Electrical Technology

(ii ) A = 1, B =1, C = 1
As detailed in Fig. 70.79, we get a final SUM 1 with
a CARRY 1.  The result conforms to the binary
addition : 1 + 1 + 1 = 112 (i.e. decimal 3)

Detailed Circuit

Fig. 70.80 shows more circuit details of a full
adder.  The two half adders have been replaced by
their XOR and AND gates.  The final carry is given
by the OR gate and final sum by the XOR gate of
the second adder.

70.32.  Parallel Binary Adder

For adding two 4-bit numbers, we need 4 full
adders connected in parallel as shown in Fig. 70.81. The two numbers being added are A 3 A 2 A 1 A 0
and B3 B2 B1 B0 and their sum is S4 S3 S2 S1 S0.

Fig. 70.81

The first adder could be a half adder though we may use a full adder but leave its CARRY-IN lead
unconnected.  As seen, different bits are fed to the four adders from two parallel registers which hold
these bits.  The final SUM appears as a 5-digit display.

Operation
The actual operation may be better understood with the help of the diagram of Fig. 70.82. Sup-

pose, we want to add the following two 4-bit numbers.

Fig. 70.82

Fig. 70.80
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   1 0 1 0  1 0

+ 1 0 1 1 + 1 1
1 0 1 0 1    2 1

The first adder performs 0 + 1 binary addition, giving a sum of 1 and a carry of 0.  The two bits 0
and 1 are supplied simultaneously from the two registers A  and B.  The sum 1 appears on the display
panel and carry 0 is passed on
to the next full adder.

The next adder adds 1 + 1
+0 carry = sum 1 with a carry 1.
The third adder performs 0 + 0 +
1 carry = 1 with carry 0. The
fourth adder adds 1 + 1 + 0 carry
= sum 0 with carry 1 both of
which appear on the display
unit.  Hence, the final addition
of the two numbers appears as
10101.

It may be noted that the
largest binary numbers that can be added by this parallel adder are 1111 and 1111 which give a sum of
111102 (decimal 30).  To increase its capacity, more full adders may be connected at the left end of  Fig.
70.82.  For example, for adding 6-bit numbers, we will have to add two more adders thus making a total
of six.

70.33. Half Subtractor
It can subtract only two binary digits at a time and produce an output of a difference and a

borrow.  As shown in the block diagram of Fig. 70.83, it has two inputs and two outputs.

The operation of a half subtractor is based on the rules of binary subtraction illustrated in the
truth Table 70.10 for all possible input/output com-
binations.  The difference output in the fourth
column has the same logic pattern as when A  is
XORed with B (same was the case for SUM in
Art. 70.30).  Hence, we can use an XOR gate to
get the difference of two bits.  The borrow output
in the third column can be obtained by ANDing
A  with B.

The circuit for a half subtractor is shown in
Fig. 70.84.

As mentioned earlier, the logical equations for the difference and borrow are given by

D  =  A  ⊕  B and W = A B

70.34. Full Subtractor
As shown in the block diagram of  Fig. 70.85, it

has three inputs and two outputs.  As explained
above, half subtractor can handle only 2 bits at a
time and can be used for the least significant col-
umn of a subtraction problem.  A full subtractor
can, however, take care of higher-order columns.

Fig. 70.83

Fig. 70.84

Table 70.10
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Fig. 70.85
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As shown in Fig.
70.86, a full subtractor con-
sists of two half subtractors
and one OR gate.

It may be remarked
here that by cascading 4 full
subtractors, we can directly
subtract 4-bit numbers i.e.
we can subtract B3 B2 B1
B0 from A3 A2 A1 A 0.

Tutorial Problems No. 70.1

1. Find the Boolean equation for the output of the logic circuit shown in Fig. 70.87.  What would be the
output if A  = 1, B = 0, C = 1, D = 1 [X = AB + CD; 1]

Fig. 70.87 Fig. 70.88
2. What is the output equation of the logic circuit shown in Fig. 70.88 ?  Evaluate the output if A  = 1, B =

1, C =0. [X= AB + (B + C); 1]
3. After finding the Boolean equation for the circuit shown in Fig. 70.89, compute the output if A  = 1, B

= 0, C = 1, D = 0. [X = (A + B) (C + D) ; 1]

Fig. 70.89 Fig. 70.90
4. Translate the hardware shown in Fig. 70.90 into a Boolean expression.  Compute the value of the

output if A  = 0, B = 1, C = 0, D = 1. [X = A + BCD ; 0]
5. What is the Boolean expression for the logic diagram shown in Fig. 70.91?  Evaluate its output if A  = 1,

B = 1, and C =1. [X= AB + C; 1]

Fig. 70.91 Fig. 70.92

Fig. 70.86
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6. Find Boolean expression for the logic circuit of Fig. 70.92.  What is the output if A  = 1, B = 1 ?

[X = (A + B) . (A + B) ; 0]

7. Give the logic functions performed by the circuits shown in Fig. 70.93 (a), (b) and (c).

[(a ) X = AB.(C + D)  (b) X = AB.C   (c) (A + B)CD ]

Fig. 70.93

8. State the logic functions of the circuits shown in Fig. 70.94 (a), (b) and (c).

[(a) (A + B).(CD) (b) AB + CD (c) (A + B). C.D.E]

Fig. 70.94

9. State the logic functions performed by the circuits of Fig. 70.95 (a), (b) and (c).

[(a ) .( +AB C D)  (b) +AB C  (c) A + B]

Fig. 70.95

10. Write the logic functions for the circuits shown in Fig. 70.96 (a), (b) and (c).

[(a ) A(B + C) + CD (b) +A B.A.C  (c) +A B C D ]

Fig. 70.96
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11. What would be the output signal if two signals A  = 1010112 and B = 1101012 are applied to the inputs
of an AND gate? [100 001]2

12. What would be the output signal if two input binary signals given by A  = 100101 and B = 110110 are
applied to (a) OR gate (b) NAND gate and (c) XNOR gate?

[(a) 1101112 (b) 0110112 (c) 1011002]
13. Sketch the output waveform at C-for a 2-input OR gate shown in Fig. 70.97 and with the given A  and

B input waveforms.

Fig. 70.97 Fig. 70.98

14. Sketch the output waveform of a 2-input AND gate shown in Fig. 70.98 with the input waveforms A
and B.

15. Sketch the output waveform at D for a 3-input AND gate shown in Fig. 70.99, with the given A , B and
C input waveforms.

Fig. 70.99 Fig. 70.100

16. Sketch the output waveform at D for a 3-input AND gate shown in Fig. 70.100, with the given A , B and
C input waveforms.

Fig. 70.101 Fig. 70.102

17. Sketch the output waveform at C for a 2-input NOR gate shown in Fig. 70.101, with the given A  and B
input waveforms.

18. Sketch the output waveform at D for a 3-input NOR gate shown in Fig. 70.102, with the given A , B and
C input waveforms.

Fig. 70.103
19. Sketch the output waveform at C for a 2-input NAND gate shown in Fig. 70.103, with the given A  and

B input waveforms.
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OBJECTIVE TESTS – 70
1. A logic gate is an electronic circuit which

(a) makes logic decision
(b) allows electron flow only in one direction
(c) works on binary algebra
(d) alternates between 0 and 1 values.

2. In positive logic, logic state 1 corresponds to

(a) positive voltage
(b) higher voltage level
(c) zero voltage level
(d) lower voltage level.

3. In negative logic, the logic state 1 corresponds
to
(a) negative voltage
(b) zero voltage
(c) more negative voltage
(d) lower voltage level.

4. The voltage levels of a negaive logic system
(a) must necessarily be negative
(b) may be negative orpositive
(c) must necessarily be positive
(d) must necessarily be 0V and −5V

5. The output of a 2-input OR gate is zero only
when its

(a) both inputs are 0
(b) either input is 1
(c) both inputs are 1
(d) either input is 0.

6. An XOR gate produces an output only when
its two inputs are

(a) high (b) low

(c) different (d) same.

7. An AND gate

(a) implements logic addition
(b) is equivalent to a series switching circuit
(c) is an any-or-all gate

(d) is equivalent to a parallel switching cir-
cuit.

8. When an input electrical signal A  = 10100 is
applied to a NOT gate, its output signal is

(a) 01011 (b) 10101

(c) 10100 (d) 00101.

9. The only function of a NOT gate is to

(a) stop a signal
(b) recomplement a signal
(c) invert an input signal

(d) act as a universal gate.

10. A NOR gate is ON only when all its inputs are

(a) ON (b) positive

(c) high (d) OFF.

11. For getting an output from an XNOR gate, its
both inputs must be

(a) high (b) low

(c) at the same logic level

(d) at the opposite logic levels.

12. In a certain 2-input logic gate, when A  = 0, B =
0, then C = 1 and when A  = 0, B = 1, then again
C = 1. It must be ....... gate.

(a) XOR (b) AND

(c) NAND (d) NOR

13. The logic symbol shown in Fig. 70.105 repre-
sents

(a) s i n g l e - o u t p u t
AND gate

(b) NAND gate

(c) NAND gate used
as NOT gate

(d) NOR gate.

Fig. 70.104

20. Sketch the output waveform at D for a 3-input NAND gate shown in Fig. 70.104, with the given A , B and
C input waveforms.

Fig. 70.105
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14. The output from the logic gate shown in Fig.
70.106 will be available when inputs ...... are
present.

(a) A  and C

(b) B and C

(c) A , B and C
(d) A  and B

15. To get an output 1 from circuit of Fig. 70.107,
the input must be A B C

(a) 0 1 0 (b) 1 0 0

(c) 1 0 1 (d) 1 1 0

16. Which of the following logic gates in Fig. 70.108
will have an output of 1 ?

Fig. 70.108

17. A half-adder can be constructed from

(a) two XNOR gates only

(b) one XOR and one OR gate with their out-
puts connected in parallel

(c) one XOR and one OR gate with their in-
puts connected in parallel

(d) one XOR gate and one AND gate

18. The digital equivalent of an electric series cir-
cuit is the ................... gate.

(a) NOR (b) NAND

(c) OR (d) AND

19. Which of the following represents analog data ?

(a) ON and OFF states (b) 0 and 1

(c) 0V and 5V           (d)1.5, 3.2, 4 and 5V

20. The logic gate which produces a 0 or low-level
output when one or both of the inputs are 1 is
called ................ gate.

(a) AND (b) OR

(c) NOR (d) NAND

21. The output X of the gated network shown in
Fig. 70.109 is

(a) AB . CD . EF
(b) AB CD EF+ +
(c) AB + CD + EF

(d) (A + B) (C + D) (E + F)

Fig. 70.109

22. The digital circuit shown in Fig 70.110 gener-
ates a modified clock pulse at the output. Choose
the correct output waveform from the options
given below.   (GATE; 2004)

Fig. 70.110

ANSWERS

1.  (a) 2. (b) 3. (d) 4. (b) 5.  (a) 6.  (c) 7.  (b) 8.  (a) 9.  (c) 10.  (d)

11. (c) 12. (c) 13. (d) 14. (c) 15. (c) 16. (d) 17. (c) 18. (d) 19. (d) 20. (c)

21. (c) 22. (d)

A
B
C

Fig. 70.106

A

B

C

Fig. 70.107
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