

Leaming Objectives

$>$ NumberSystems
> The Decimal NumberSystem
> Binary Number System
$>$ Binary to Decimal Conversion
> Binary Fractions
$>$ Double-Dadd Method
$>$ Decimal to Binary Conversion
> Shifting the Place Point
> Binary Operations
> Binary Addition
$>$ Binary Subtraction
> Complement of a Number
> 1'sComplemental Subtraction
> 2'sComplemental Subtraction
> Binary Multiplication
$>$ Binary Division
$>$ Shifting a Numberto LeftorRight
> Octal Number System
> Octalto Decimal Conversion
> Decimal to Octal Conversion
> Binary to Octal Conversion
> Octal to Binary Conversion
$>$ Binary to Hexadecimal Conversion
$>$ Decimal to Hexadecimal Conversion
$>$ Hexadecimal to Decimal Conversion
$>$ Digital Coding
$>$ Binary Coded Decimal (BCD) Code
$>$ OctalCoding
$>$ HexadecimalCoding
$>$ Excess-3Code
$>$ Gray Code
> Excess-3 Gray Code
$>$ ASCIICode

NUMBER SYSTEMS AND CODES

Logic gates use switches that control the flow of an electrical current. '1' is 'true' and ' 0 ' is 'false'. The columns in the binary system wave the values $1,2,4,8,16,32$ and so no.

69.1. Number Systems

The number systems are used quite frequently in the field of digital electronics and computers. However the type of number system used in computers could be different at different stages of the usage. For example, when a user key-in some data into the computer, s (he), will do it using decimal number system i.e. the system we all have used for several years for doing arithmetic problems. But when the information goes inside the computer, it needs to be converted to a form suitable for processing data by the digital circuitry. Similarly when the data has to be displayed on the monitor for the user, it has to be again in the decimal number system. Hence the conversion from one number system to another one is an important topic to be understood.

There are four systems of arithmetic which are often used in digital circuits. These systems are:

1. Decimal-it has a base (or radix) of 10 i.e. it uses 10 different symbols to represent numbers.
2. Binary-it has a base of 2 i.e. it uses only two different symbols.
3. Octal-it has a base of 8 i.e. it uses eight different symbols.
4. Hexadecimal-it has a base of 16 i.e. it uses sixteen different symbols.

All these systems use the same type of positional notation except that

- decimal system uses powers of 10 - binary system uses power of 2
— octal system uses powers of 8 — hexadecimal system uses powers of 16.
Decimal numbers are used to represent quantities which are outside the digital system. Binary system is extensively used by digital systems like digital computers which operate on binary information. Octal system has certain advantages in digital work because it requires less circuitry to get information into and out of a digital system. Moreover, it is easier to read, record and print out octal numbers than binary numbers. Hexadecimal number system is particularly suited for microcomputers.

69.2. The Dec imal Number System

We will briefly recount some important characteristics of this more-familiar system before taking up other systems. This system has a base of 10 and is a position-value system (meaning that value of a digit depends on its position). It has following characteristics :
(i) Base or Radix

It is defined as the number of different digits which can occur in each position in the number system.

The decimal number system has a base of 10 meaning that it contains ten unique symbols (or digits). These are : $0,1,2,3,4,5,6,7,8,9$. Any one of these may be used in each position of the number.

Incidentally, it may be noted that we call it a decimal (10's) system although it does not have a distinct symbol of 10. As is well-known, it expresses 10 and any number above 10 as a combination of its ten unique symbols.
(ii) Position Value

Fig. 69.1

The absolute value of each digit is fixed but its position value (or place value or weight) is determined by its position in the overall number. For example, position value of 3 in 3000 is not the same as in 300. Also, position value of each 4 in the number 4444 is different as shown in Fig. 69.1.

Similarly, the number 2573 can be broken down as follows :

$$
2573=2 \times 10^{3}+5 \times 10^{2}+7 \times 10^{1}+3 \times 10^{0}
$$

It will be noted that in this number, 3 is the least significant digit ($L S D$) whereas 2 is the most significant digit (MSD).

Again, the number 2573.469 can be written as

$$
2573.469=2 \times 10^{3}+5 \times 10^{2}+7 \times 10^{1}+3 \times 10^{0}+4 \times 10^{-1}+6 \times 10^{-2}+9 \times 10^{-3}
$$

It is seen that position values are found by raising the base of the number system (i.e. 10 in this case) to the power of the position. Also, powers are numbered to the left of the decimal point starting with 0 and to the right of the decimal point starting with -1 .

69.3. Binary Number System

Like decimal number (or denary) system, it has a radix and it also uses the same type of position value system.
(i) Radix

Its base or radix is two because it uses only two digits 0 and 1 (the word 'binary digit' is contracted to bit). All binary numbers consist of a string of 0 s and 1 s . Examples are 10, 101 and 1011 which are read as onezero, one-zero-one and one-zero-oneone to avoid confusion with decimal numbers. Another way to avoid confusion is to add a subscript of 10 for decimal numbers and of 2 for binary numbers as illustrated below.
$10_{10}, 101_{10}, 5742_{10}$-decimal number and $10_{2}, 101_{2}, 110001_{2}$ binary numbers.

It is seen that the subscript itself

Binary numbers represent all values within computers is in decimal. It may be noted that binary numbers need more places for counting because their base is small
(ii) Position Value

Like the decimal system, binary system is also positionally-weighted. However, in this case, the

Fig. 69.2 position value of each bit corresponds to some power of 2. In each binary number, the value increases in powers of 2 starting with 0 to the left of the binary point and decreases to the right of the binary point starting with power of -1 . The position value (or weight) of each bit alongwith a 7-bit binary number 1101.011 is shown in Fig. 69.2.

As seen, the fourth bit to the left of binary point carries the maximum weight (i.e. it has the highest value) and is called most significant digit (MSD). Similarly, the third bit to the right of the binary point is called least significant digit $(L S D)$. The decimal equivalent of the binary number may be found as under

$$
\begin{aligned}
1101.011_{2} & =\left(1 \times 2^{3}\right)+\left(1 \times 2^{2}\right)+\left(0 \times 2^{1}\right)+\left(1 \times 2^{0}\right)+\left(0 \times 2^{-1}\right)+\left(1 \times 2^{-2}\right)+\left(1 \times 2^{-3}\right) \\
& =8+4+0+1+0+\frac{1}{4}+\frac{1}{8}=13.375_{10}
\end{aligned}
$$

2528

As stated earlier, position values of different bits are given by ascending powers of 2 to the left of binary point and by descending power of 2 to the right of binary point. The different digit positions of a given binary number have the following decimal weight (Fig. 69.3)

Binary numbers are used extensively by all digital systems primarily due to the nature of electronics itself. The bit 1 may be represented by

Fig. 69.3 a saturated (fully-conducting) transistor, a light turned ON, a relay energised or a magnet magnetised in a particular direction. The bit 0 , on the other hand, can be represented as a cut-off transistor, a light turned OFF, a relay de-energised or a magnet magnetised in the opposite direction. In such cases, there are only two values which a device can assume.

69.4. Binary to Decimal Conversion

Following procedure should be adopted for converting a given binary integer (whole number) into its equivalent decimal number :

Step 1. Write the binary number i.e. all its bits in a row.
Step 2. Directly under the bits, write $1,2,4,8,16, \ldots$. starting from right to left.
Step 3. Cross out the decimal weights which lie under 0 bits.
Step 4. Add the remaining weights to get the decimal equivalent.

Example 69.1. Convert 11001_{2} to its equivalent decimal number.

Solution. The four steps involved in the conversion are as under

Step 1.	1	1	0	0	1
Step 2.	16	8	4	2	1
Step 3.	16	8	\nsim	$\not 2$	1
Step 4.	$16+8+1=25$		\therefore	$11001_{2}=25_{10}$	

It is seen that the number contains 1 sixteen, one eight, 0 four's, 0 two's and 1 one. Certain decimal and binary equivalent numbers are tabulated below in Table No. 69.1

Table No. 69.1

Decimal	Binary	Decimal	Binary	Decimal	Binary
1	1	11	1011	21	10101
2	10	12	1100	22	10110
3	11	13	1101	23	10111
4	100	14	1110	24	11000
5	101	15	1111	25	11001
6	110	16	10000	26	11010
7	111	17	10001	27	11011
8	1000	18	10010	28	11100
9	1001	19	10011	29	11101
10	1010	20	10100	30	11110

69.5. Binary Fractions

Here, procedure is the same as for binary integers except that the following weights are used for different bit positions .

-2^{-1}	2^{-2}	2^{-2}	2^{-4}	\rightarrow	
\uparrow	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{16}$	\rightarrow

Binary Point
Example 69.2. Convert the binary fraction 0.101 into its decimal equivalent.
Solution. The following four steps will be used for this purpose.

Step 1.	0	1	0	1
Step 2.	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	
Step 3.	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	

Step 4. $\frac{1}{2}+\frac{1}{8}=0.625$
\therefore
$0.101_{2}=0.625_{10}$

Example 69.3. Find the decimal equivalent of the 6-bit binary number 101.101_{2}.

| Solution. | 1 | 0 | 1 | 1 | 0 | 1 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 4 | 2 | 1 | $\frac{1}{2}$ | $\frac{1}{4}$ | $\frac{1}{8}$ | |
| | 4 | $\mathscr{2}$ | 1 | $\frac{1}{2}$ | $\frac{1}{4}$ | $\frac{1}{8}$ | $=5+\frac{1}{2}+\frac{1}{8}=5.625$ |
| $\therefore \quad 101.101_{2}=5.625_{10}$ | | | | | | | |

69.6. Double-Dadd Method

This method of converting binary integers into decimal equivalents is much simpler and quicker than the method given in Art. 69.4 especially in the case of large numbers. Following three steps are involved:

1. Double the first bit to the extreme left and add this doubled value to the next bit on the right.
2. Double the sum obtained and add the doubled value to the next bit.
3. Continue step 2 until the last bit has been added to the previously-doubled sum.

The conversion of 11001_{2} is shown in Fig. 69.4. It is seen that $11001_{2}=25_{10}$

Fig. 69.4

Using double-dadd method, let us convert $111010{ }_{2}$ into its binary equivalent.

1. $2 \times 1=2$, add next bit 1 so that $2+1=3$
2. $2 \times 3=6, \quad$ add next bit 1 so that $6+1=7$
3. $2 \times 7=14$, add next bit 0 so that $14+0=14$
4. $2 \times 14=28, \quad$ add next bit 1 so that $28+1=29$

$$
\begin{aligned}
& \text { 5. } 2 \times 29=58, \quad \text { add next bit } 0 \text { so that } 58+0=58 \\
& \therefore \quad 111010_{2}=58_{10}
\end{aligned}
$$

69.7. Decimal to Binary Conversion

(a) Integers

Such conversion can be achieved by using the so-called double-dabble method. It is also known as divide-by-two method. In this method, we progressively divide the given decimal number by 2 and write down the remainders after each division. These remainders taken in the reverse order (i.e. from bottom-to-top) form the required binary number. As an example, let us convert 25_{10} into its binary equivalent.

$$
\begin{aligned}
25 \div 2 & =12+\text { remainder of } 1 & \text { TOP } \\
12 \div 2 & =6+\text { remainder of } 0 & \\
6 \div 2 & =3+\text { remainder of } 0 & \\
3 \div 2 & =1+\text { remainder of } 1 & \\
1 \div 2 & =0+\text { remainder of } 1 & \\
\therefore \quad 25_{10} & =11001_{2} & \text { BOTTOM }
\end{aligned}
$$

The above process may be simplified as under :

Successive Divisions	Remainders
2) 25	
$\frac{2) 12}{2)}=$	1
$\frac{2)}{2)}=$	0
$\frac{2)}{2}=$	1
2$) 0$	1

Reading the remainders from bottom to top, we get $25_{10}=11001_{2}$ It may also be put in the following form :

(b) Fractions

In this case, Multiply-by-two rule is used i.e. we multiply each bit by 2 and record the carry in the integer position. These carries taken in the forward (top-to-bottom)direction gives the required binary fraction.

Let us convert 0.8125_{10} into its binary equivalent.

$$
\begin{array}{rlrlrl}
0.8125 \times 2 & =1.625 & & =0.625 & & \text { with a carry of } 1 \\
0.625 \times 2 & =1.25 & & =0.25 & & \text { with a carry of } 1 \\
0.25 \times 2 & =0.5 & & =0.5 & & \text { with a carry* of } 0 \\
0.5 \times 2 & =1.0 & & =0.0 & & \text { with a carry of } 1 \\
\therefore \quad 0.8125_{10} & =0.1101_{2} & & & \\
\therefore \quad 0 & &
\end{array}
$$

[^0]Please note that we have to add the binary point from our side. Let us now convert 0.77_{10} into its binary equivalent.
$0.77 \times 2=1.54=0.54$ with a carry of 1
$0.54 \times 2=1.08=0.08$ with a carry of 1
$0.08 \times 2=0.16=0.16$ with a carry of 0
$0.16 \times 2=0.32=0.32$ with a carry of 0
$0.32 \times 2=0.64=0.64$ with a carry of 0
$0.64 \times 2=1.28=0.28$ with a carry of 1

We may stop here but the answer would be approximate. $\therefore 0.77_{10} \cong .110001_{2}$
Example 69.4. Convert 25.625_{10} into its binary equivalent.
Solution. We will do the conversion in two steps (i) first for the integer and (ii) then for the fraction.

(a) Integer	
$25 \div 2$	$=12+1$
$12 \div 2$	$=6+0$
$6 \div 2$	$=3+0$
$3 \div 2$	$=1+1$
$1 \div 2$	$=0+1$
$\therefore \quad 25_{10}$	$=11001_{2}$

(b) fraction

$$
\begin{aligned}
0.625 \times 2 & =1.25=0.25+1 \\
0.25 \times 2 & =0.5=0.5+0 \\
0.5 \times 2 & =1.0=0.0+1
\end{aligned}
$$

Considering the complete number, we have $25.625_{10}=11001.101_{2}$
Obviously, binary system needs more bits to express the same number than decimal system.

69.8. Shifting the Place Point

In a decimal number if the decimal point is moved one place to the right, the number is multiplied by 10. For example, when decimal point in 7.86 is shifted one place to the right, it becomes 78.6 i.e. it increases the value of the number 10 times. Moving the decimal point one place to the left reduces its value to one-tenth.

In binary numbers, shifting the binary point by one place multiplies or divides the number by 2 . For example, 111.0_{2} is equal to 7_{10} but 1110.0_{2} is 14_{10}. As seen, 7 is doubled to 14 by moving the binary point one place to the right.

Similarly, 11.1_{2} is $\left(2+1+\frac{1}{2}\right)=3.5_{10}$. Hence, 111.0_{2} is halved to 3.5_{10} by moving its binary point one place to the left.

69.9. Binary Operations

We will now consider the following four binary operations :

1. addition
2. subtraction
3. multiplication
4. division

Addition is the most important of these four operations. In fact, by using 'complements', subtraction can be reduced to addition. Most digital computers subtract by complements. It leads to reduction in hardware because only adding type of circuits are required. Similarly, multiplication is nothing but repeated addition and, finally, division is nothing but repeated subtraction.

69.10. Binary Addition

Addition is simply the manipulation of numbers for combining physical quantities. For example, in the decimal number system, $2+3=5$ means the combination of $\bullet \bullet$ with $\bullet \bullet$ to give a total of $\bullet \bullet$ - - Addition of binary numbers is similar to the decimal addition.

Following points will help in understanding the rules of binary addition.

1. When 'nothing' is combined with 'nothing', we get nothing.

Binary representation of the above statement is : $0+0=0$
2. When nothing is combined with \bullet, we get \bullet.

In binary language

$$
0+1=1
$$

3. Combining • with nothing, gives \bullet.

The binary equivalent is $\quad 1+0=1$
4. When we combine \bullet with \bullet, we get $\bullet \bullet$.

The binary representation of the above is $\quad 1+1=10$
It should be noted that the above sum is not 'ten' but 'one-zero' i.e. it represents $\bullet \bullet$ and not $\bullet \bullet$
-••••• In other words, it is 10_{2} which represents decimal 2. It is not decimal ten.
The last rule is often written as $1+1=0$ with a carry of 1
The above rules for binary addition can be summarized as under :

$$
\begin{array}{llll}
0+0=0 & 0+1=1 \\
1+0=1 & 1+1=0 & \text { with a carry of } 1 & \text { or }=10_{2}
\end{array}
$$

It is worth noting that 'carry-overs' are performed in the same manner as in decimal arithmetic. The rules of binary addition could also be expressed in the form of a table as shown below

| | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad or \quad| | | | |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 0 |
| 1 | 1 | 10_{2} | |
| 1 | 1 | 0 | 1 |\quad with a carry 1

As an illustration, let us add 101 and 110.

$$
\begin{array}{rll}
101 & \text { - first column } & 1+0=1 \\
+\quad 110 \\
\hline 1011 & - \text { second column } & 0+1=1 \\
\text { - third column } & 1+1=10
\end{array}
$$

(i.e. 0 with carry 1)

Similarly,
1 carry

$$
\begin{array}{rrr}
111 & -1 \text { st column } & 1+0=1 \\
+110 & -2 \text { nd column } & 1+1=0 \\
1101 & -3 \text { rd column } & 1+1+\text { carry of } 1 \\
& & =10+1=11_{2}
\end{array}
$$

Let us consider one more example :

1 carry	\leftarrow	\leftarrow
1011		
+1001	11 carry	11 carry

Hence, we find from the above examples that the only two possible combinations with a carry are :
(a) $1+1=$ sum of 0 with a carry of 1 .

It is binary 10 i.e. 10_{2} which equals decimal 2 .
(b) $1+1+$ carry of $1=$ a sum of 1 with a carry of 1 .

It equals binary 11 i.e. 11_{2} or decimal 3 .

Example 69.5. Add 110011_{2} to 101101_{2}
(Digital Electronics, Bombay Univ. April)
Solution. 110011

$$
\begin{array}{r}
101101 \\
\hline 1100000
\end{array}
$$

1. first column : $1+1=0$ with a carry of 1 . Hence, we put down zero there and carry 1 to the second column.
2. second column : $1+0=1$. But combined with carry 1 from first column, it gives $1+1=$ 0 and a carry of 1 . Hence, we put down 0 there and carry 1 further to the third column.
3. third column : $0+1=1$. Again, when it is combined with carry of 1 from the second column, we get $1+1=0$ with a carry of 1 . Hence, again, we put down 0 and carry 1 to the fourth column.
4. fourth column : Here, $0+1=1$. When combined with carry 1 from third column, we get $1+1=0$ with a carry of 1 . Hence, we put down 0 there and carry 1 to the fifth column.
5. fifth column : Here, $1+0=1$ When combined with the carry 1 from fourth column, we get $1+1=0$ with a carry of 1 . Hence, we put down 0 there and carry 1 to the sixth column.
6. sixth column : Here, it is a case of $1+1+$ carry of $1=11_{2}$ as stated earlier in (b) above.

69.11. Binary Subtraction

It is also performed in a manner similar to that used in decimal subtraction. Because binary system has only two digits, binary subtraction requires more borrowing operations than decimal subtraction. The four rules for binary subtraction are as under:

1. $0-0=0$,
2. $1-0=1$,
3. $1-1=0$,
4. $0-1=1$ with a borrow of 1 from the next column of the minuend or $\quad 10-1=1$

The last result represents $\bullet \bullet-\bullet-\bullet$ which makes sense.
While using Rule 4 , it should be borne in mind that borrow reduces the remaining minuend by 1. It means that a borrow will cause a 1 in the next column to the left in the minuend to become 0 . If the next column also happens to contain 0 , it is changed to a 1 and the succeeding 0 s in the minuend are changed to 1 s until a 1 is found which is then changed to a 0 .

Example 1

Let us subtract 0101_{2} from 1110 . The various steps are explained below :

$\not \partial 1$ borrow	$\varnothing 1$	$\varnothing 1$	$\varnothing 1$
1110	1110	1110	1110
-0101	-0101	$-\overline{0101}$	-0101
1	01	001	1001

Explanation

1. In the first column, since we cannot subtract 1 from 0 , we borrow 1 from the next column to the left. Hence, we put down 1 in the answer and change the 1 of the next left column to a 0 .
2. We apply Rule 1 to next column i.e. $0-0=0$
3. We apply Rule 3 to the 3 rd column i.e. $1-1=0$
4. Finally, we apply Rule 2 to the last i.e. fourth column it. $1-0=1$ As a check, it may be noted that talking in terms of decimal numbers, we have subtracted 5 from 14. Obviously, the answer has to be $9\left(1001_{2}\right)$.

Example 2.

Let us now try subtracting 0001_{2} from 1000_{2}.

Step 1	Step 2	Step 3	Step 4
1	11	011	011
$10 \emptyset 0$	$1 \emptyset \emptyset 1$	$1 \emptyset \emptyset 1$	$1 \emptyset \emptyset 1$
-0001			
1	$\frac{-0001}{1}$	$\frac{-0001}{1}$	$\frac{-0001}{0111}$

Since there happened to be a 0 in the second column, it was changed to 1 . Again, there was a 0 in the third column, so it was also changed to a 1 . Finally, we met a 1 in the forth column which was changed to a 0 and the final answer was written down as shown above.

Example 69.6. Subtract 0111_{2} from $1001_{2} \quad$ (Digital Computations, Punjab Univ. 1991)
1001 1st column
: $1-1=0$

$$
\begin{array}{ll}
-0111 \\
\hline 0010
\end{array} \begin{aligned}
& \text { 2nd column } \\
& \text { 3rd column } \\
& \text { 4th column }
\end{aligned} \quad: 1 \text { (after borrow) }-1=0 \text { (after borrow) }-0=0
$$

Example 69.7. Subtract 01011_{2} from 10110_{2}
Solution. Step-wise the solution is as under :

Step 1	Step 2	Step 3	Step 4	Step 5
0	00	00	000	000
10110	10110	10110	10110	10110
$-\frac{01011}{1}$	$-\frac{01011}{11}$	$-\frac{01011}{011}$	$\frac{-01011}{1011}$	$-\frac{01011}{01011}$

69.12. Complement of a Number

In digital work, two types of complements of a binary number are used for complemental subtraction :
(a) 1's complement

The 1 's complement of a binary number is obtained by changing its each 0 into a 1 and each 1 into a 0 . It is also called radix-minus-one complement. For example, 1 's complement of 100_{2} is 011_{2} and of 1110_{2} is 0001_{2}.
(b) 2's complement

The 2 's complement of a binary number is obtained by adding 1 to its 1 's complement.

$$
2 \text { 's complement }=1 \text { 's complement }+1
$$

It is also known as true complement. Suppose we are asked to find 2's complement of 1011_{2}. Its 1 's complement is 0100_{2}. Next, add 1 to get 0101_{2}. Hence, 2 's complement of 1011_{2} is 0101_{2}.

The complement method of subtraction reduces subtraction to an addition process.
This method is popular in digital computers because

1. only adder ciruits are needed thus simplifying the circuitry,
2. it is easy with digital circuits to get the complements.

69.13. 1's Complemental Subtraction

In this method, instead of subtracting a number, we add its 1 's complement to the minuend. The last carry (whether 0 or 1) is then added to get the final answer. The rules for subtraction by 1's complement are as under :

1. compute the 1 's complement of the subtrahend by changing all its 1 s to 0 s and all its 0 s to 1 s .
2. add this complement to the minuend
3. perform the end-around carry of the last 1 or 0
4. if there is no end-around carry (i.e. 0 carry), then the answer must be recomplemented and a negative sign attached to it.
5. if the end-around carry is 1 , no recomplementing is necessary.

Suppose we want to subtract 101_{2} from 111_{2}. The procedure is as under :

$$
\begin{array}{r}
111 \\
+010 \\
\hline 1001 \\
\begin{array}{r}
1 \\
\hline 010
\end{array} \quad \leftarrow 1 \text { 's complement of subtrahend } 101 \\
\end{array}
$$

As seen, we have removed from the addition sum the 1 carry in the last position and added it onto the remainder. It is called end-around carry.

Let us now subtract 11012 from $1010{ }_{2}$.

$$
\begin{array}{r}
1010 \\
+\begin{array}{r}
0010 \\
\hline 1100 \\
\text { NO CARRY }
\end{array} \quad \leftarrow 1 \text { 's complement of } 1101
\end{array}
$$

As seen, there is no end-around carry in this case. Hence, as per Rule 4 given above, answer must be recomplemented to get 0011 and a negative sign attached to it. Therefore, the final answer be-comes-0011.

Finally, consider the complemental subtraction of 1110_{2} from 0110_{2}.

$$
\begin{array}{r}
0110 \\
+\quad 0001 \\
\hline 0111 \\
\quad \text { NO CARRY }
\end{array} \quad \leftarrow \text { 's complement of } 1110_{2}
$$

As seen, there is no carry. However, we may add an extra 0 from our side to make it a 0 carry as shown below.

$$
\begin{aligned}
& 0110 \\
&+0001 \\
& \hline 00111 \\
& 0 \leftarrow 1 \text { 's complement of subtrahend } \\
& \hline 00111
\end{aligned} \quad \leftarrow \text { end-around carry }
$$

After recomplementing, it becomes 1000. When negative sign is attached, the final answer becomes -1000_{2}.

Example 69.8. Using I's complemental method, subtract 01101_{2} from 11011_{2}.
Solution. $\quad 11011$

$$
\begin{aligned}
& \frac{+10010}{101101} \leftarrow 1 \text { 's complement of subtrahend } \\
& 1 \\
& \hline 01110 \leftarrow \text { end-around carry }
\end{aligned}
$$

Since end-around carry is 1 , we take the final answer as it is (Rule 5).

Example 69.9. Use l's complement to subtract 11011_{2} from 01101_{2}. (Computer Science, Allahabad Univ.)
Solution. $\quad 01101$

$$
\begin{aligned}
+00100 & \leftarrow 1 \text { 's complement of } 11011_{2} \\
10001 & \rightarrow-01110
\end{aligned}
$$

NO CARRY

Since there is no final carry, we recomplement the answer and attach a minus sign to get the final answer- 01110_{2}.

69.14. 2's Complemental Subtraction

In this case, the procedure is as under :

1. find the 2 's complement of the subtrahend,
2. add this complement to the minuend,
3. drop the final carry,
4. if the carry is 1 , the answer is positive and needs no recomplementing,
5. if there is no carry, recomplement the answer and attach minus sign.

Example 69.10. Using 2's complement, subtract 1010_{2} from 1101_{2}.
Solution. The 1's complement of 1010 is 0101 . The 2's complement is $0101+1=0110$. We will add it to 1101.

$$
\begin{array}{r}
1101 \\
+0110 \\
\hline 10011
\end{array} \quad \leftarrow 2 \text { 's complement of } 1010_{2}
$$

DROP
The final answer is 0011_{2}.
Example 69.11. Use 2's complement to subtract 1101_{2} from $1010{ }_{2}$.
(Digital Computations, Punjab Univ. 1992)
Solution. The 1's complement of 1101 is 0010 . The 2's complement is 0011.

$$
1010
$$

$$
\begin{aligned}
& +\frac{0011}{1101} \quad \leftarrow 2 \text { 's complement of } 1101_{2} . \\
& \quad \text { NO CARRY }
\end{aligned}
$$

In this case, there is no carry. Hence, we have to recomplement the answer. For this purpose, we first subtract 1 from it to get 1100 . Next, we recomplement it to get 0011 . After attaching the minus sign, the final answer becomes -0011_{2}.

Talking in terms of decimal numbers, we have subtracted 13 from 10 . Obviously the answer is -3 .

69.15. Binary Multiplication

The procedure for this multiplication is the same as for decimal multiplication though it is comparatively much easier. The four simple rules are as under:

1. $0 \times 0=0$,
2. $0 \times 1=0$,
3. $1 \times 0=0$,
4. $1 \times 1=1$.

The rules of binary multiplication could be summarized in the form of a table as shown.

$$
\begin{array}{r}
01 \\
\frac{000}{101}
\end{array}
$$

As in the decimal system, the procedure is

1. copy the multiplicand when multiplier digit is 1 but not when it is 0
2. shift as in decimal multiplication
3. add the resulting binary numbers according to the rules of binary addition.

Example 69.12. Multiply 111_{2} by 101_{2} using binary multiplication method.
(Electronics-1, Indore Univ. 1991)
Solution.

111

$$
\begin{array}{r}
\times 101 \\
\hline 111
\end{array}
$$

$$
000 \quad \text { - shift left, no add }
$$

$$
111 \quad \text { - shift left and add }
$$

Example 69.13. Multiply 1101_{2} by 1100_{2}.
(Digital Electronics, Bombay Univ. 1990)
Solution.

$$
1101
$$

$$
\begin{array}{r}
\times 1100 \\
\hline 0000
\end{array}
$$

$$
0000
$$

1101

$$
\frac{1101}{10011100}
$$

Example 69.14. Multiply 1111 by 0111_{2}.

Solution. This example has been included for the specific purpose of explaining how to handle the addition if multiplication results in columns with more than two $1 s$.

1. Result of the first column is 1 .
2. In the second column, addition of $1+1=10_{2}$. Hence, we put down 0 there and carry 1 to the third column.
3. In the third column, $1+1+1+$ $1=100_{2}$ (decimal 4). We keep one 0 there, put the second 0 in fourth column and pass on 1 to the fifth column.
4. In the fourth column, $1+1+1+$ $0=11$, (decimal 3). Hence, one 1 is kept there and the other 1 is passed on to the fifth column.
5. In the fifth column, $1+1+1+1$ $=100_{2}$ (decimal 4). Again, one 0 is retained there, second 0 is passed on to the sixth column and 1 to the seventh column.
6. In the sixth column, $1+0=1$.
7. The seventh column already has 1 given by the addition of the
 fifth column.

69.16. Binary Division

It is similar to the division in the decimal system. As in that system, here also division by 0 is meaningless. Rules are :

1. $0 \div 1=0 \quad$ or $\quad \frac{0}{1}=0$,
2. $1 \div 1=1$ or $\frac{1}{1}=1$.

Example 69.15. Carry out the binary division $11001 \div 101$
Solution.

101 \begin{tabular}{r}
101

11001
$\frac{101}{10}$
101
$\frac{101}{000}$

\end{tabular}

After we bring down the next 0 bit, the number 10 so formed is not divisible by 101 . Hence, we put a 0 in the quotient. Therefore, the answer is 101_{2} (decimal 5).

Incidentally, it may be noted that the dividend 25_{10} and divisor is 5_{10} so that the result of division, as expected, is 5_{10}.

Example 69.16. Divide 11011_{2} by 100_{2}
(Digital Computations, Punjab Univ. 1990)
Solution. $\begin{array}{r}1 0 0 \longdiv { 1 1 0 . 1 1 } \\ 1011\end{array}$
100
101
$4 \longdiv { 2 7 }$
24
100
30
11
$\underline{28}$
110
20
$\frac{100}{100} \quad \frac{20}{00}$
$\frac{100}{000}$

69.17. Shifting a Number to Left or Right

Shifting binary numbers one step to the left or right corresponds respectively to multiplication or division by decimal 2 .

When binary number $101100_{2}\left(44_{10}\right)$ is shifted one step to the left, it becomes 1011000_{2} which is 88_{10} i.e. it is doubled. If the given number is shifted one step to the right, it becomes 10110_{2} which is 22_{10}. Obviously, the number is halved.

69.18. Representation of Binary Numbers as Electrical Signals

As seen from above, any binary number can be represented as a string of 0 s and 1 s . However, it is fine for paper and pencil calculations only. Practical problem is how to apply the desired binary information to logic circuits in digital computers. For that purpose, two types of electrical signals are selected to represent 1 and 0 . Since speed and accuracy are of primary importance in digital circuits, the two electrical signals chosen to represent 1 and 0 must meet very rigid requirements.

1. they must be suitable for use in high-speed circuitry,
2. the signals should be very easy to tell apart,
3. they must be hard to confuse with each other.

The second and third statements may look alike but they, in fact, are not so. It is found that all transistor circuits distort, to some extent, the electrical signals that pass through them. Sometime, these distorted signals can look confusingly alike. Hence, this effect of distortion or degradation has to be kept in mind while selecting the two signals.

Fig. 69.6

Fig. 69.7

In Fig. 69.6 are shown several signal pairs that meet the above requirements. It will be noted that it is impossible to distort a positive pulse (representing 1) to look like the no pulse or negative pulse (representing 0).

Fig. 69.7 shows how signal pairs can be used to represent different binary numbers.

69.19. Octal Number System

(i) Radix or Base

It has a base of 8 which means that it has eight distinct counting digits :

$$
0,1,2,3,4,5,6 \text {, and } 7
$$

These digits 0 through 7, have exactly the same physical meaning as in decimal system.
For counting beyond 7, 2-digit combinations are formed taking the second digit followed by the first, then the second followed by the second and so on. Hence, after 7, the next octal number is 10 (second digit followed by first), then 11 (second digit followed by second) and so on. Hence, different octal numbers are :

0,	1,	2,	3,	4,	5,	6,	7,
10,	11,	12,	13,	14,	15,	16,	17,
20,	21,	22,	23,	24,	25,	26,	27,
30,	31,	32,	\ldots	\ldots	\ldots	\ldots	\ldots

(ii) Position Value

The position value (or weight) for each digit is given by different powers of 8 as shown below:

$$
\leftarrow 8^{3} \quad 8^{2} \quad 8^{1} \quad 8^{0} \quad \underset{\uparrow}{\bullet} \quad 8^{-1} \quad 8^{-2} \quad 8^{-3} \rightarrow
$$

octal point

For example, decimal equivalent of octal 352 is

$$
\begin{array}{llll}
3 & 5 & 2 & 0 \\
8^{2} & 8^{1} & 8^{0} & \\
64 & 8 & 1 & =3 \times 64+5 \times 8+2 \times 1=234_{10} \\
352_{8} & =3 \times 8^{2}+5 \times 8^{1}+2 \times 8^{0}=192+40+2=234_{10}
\end{array}
$$

or
Similarly, decimal equivalent of octal 127.24 is

$$
\begin{aligned}
127.24_{8} & =1 \times 8^{2}+2 \times 8^{1}+7 \times 8^{0}+2 \times 8^{-1}+4 \times 8^{-2} \\
& =64+16+7+\frac{2}{8}+\frac{4}{64}=87.3125_{10}
\end{aligned}
$$

69.20. Octal to Decimal Conversion

Procedure is exactly the same as given in Art. 68.4 except that we will use digit of 8 rather than 2 .
Suppose, we want to convert octal 206.104_{8} into its decimal equivalent number. The procedure is as under:

$$
\left.\begin{array}{ccccll}
& \begin{array}{ccccc}
2 & 0 & 6 & 1 & 0
\end{array} \\
8^{2} & 8^{1} & 8^{0} & 8^{-1} & 8^{-2} & 8^{-3} \\
\therefore & & 206.104_{8} & = & 2 \times 8^{2}+6 \times 8^{0}+\frac{1}{8}+\frac{4}{8^{3}} & =128+6+\frac{1}{8}+\frac{1}{128}=\left(134 \frac{17}{128}\right.
\end{array}\right)
$$

69.21. Decimal to Octal Conversion

The double-dabble method (Art 69.7) is used with 8 acting as the multiplying factor for integers and the dividing factor for fractions.

Let us see how we can convert 175_{10} into its octal equivalent.

$$
\begin{aligned}
175 \div 8 & =21 \\
21 \div 8 & =2 \\
2 \div 8 & =0
\end{aligned}
$$

with 7 remainder
with 5 remainder
with 2 remainder

Taking the remainders in the reverse order, we get $257_{8} . \quad \therefore \quad 175_{10}=257_{8}$ Let us now take decimal fraction 0.15 . Its octal equivalent can be found as under:

$$
\begin{array}{rlrl}
0.15 \times 8 & =1.20=0.20 & & \text { with a carry of } 1 \\
0.20 \times 8 & =1.60=0.60 & & \text { with a carry of } 1 \\
0.60 \times 8 & =4.80=0.80 & & \text { with a carry of } 4 \\
\therefore \quad 0.15_{10} & \cong 114_{8} &
\end{array}
$$

As seen, here carries have been taken in the forward direction i.e. from top to bottom.
Using positional notation, the first few octal numbers and their decimal equivalents are shown in Table 69.2.

Table No. 69.2					
Octal	Decimal	Octal	Decimal	Octal	Decimal
0	0	12	10	24	20
1	1	13	11	25	21
2	2	14	12	26	22
3	3	15	13	27	23
4	4	16	14	30	24
5	5	17	15	31	25
6	6	20	16	32	26
7	7	21	17	33	27
10	8	22	18	34	28
11	9	23	19	35	29

69.22. Binary to Octal Conversion

The simplest procedure is to use binary-triplet method. In this method, the given binary number is arranged into groups of 3 bits starting from the octal point and then each group is converted to its equivalent octal number. Of course, where necessary, extra 0 s can be added in front (i.e. left end) of the binary number to complete groups of three.

Suppose, we want to convert 101011_{2} into its octal equivalent. Converting the bits into groups of three, we have \therefore

101011
Now, 101_{2} is 5 octal and 011 is 3 octal.

$$
\begin{array}{ccccc}
\therefore & 101 & 011 & & \\
& \downarrow & \downarrow & & \\
5 & 3 & \therefore & 101011_{2}=53_{8}
\end{array}
$$

Now, take 111110111_{2}. We will first split it into groups of three bits (space is left between the groups for easy reading). Then, each group is given its octal number as shown below.

111	110	111				
\downarrow	\downarrow	\downarrow				
7	6	7	\therefore	111	110	$111_{2}=767_{8}$

Finally, take the example of a mixed binary number 10101.11_{2}. Here, we will have to add one 0 in front of the integral part as well as to the fractional part

010	101	110		
\downarrow	\downarrow	\downarrow		
2	5	6	\therefore	$10101.11_{2}=25.6_{8}$

The equivalence between binary triplets and octal numbers is given in Table 69.3.

Table No. 69.3			
Binary	Octal	Binary	Octal
000	0	1010	12
001	1	1011	13
010	2	1100	14
011	3	1101	15
100	4	1110	16
101	5	1111	17
110	6	10000	20
111	7	10001	21
1000	10	10010	22
1001	11	10011	23

69.23. Octal to Binary Conversion

The procedure for this conversion is just the opposite of that given in Art 69.22. Here, each digit of the given octal number is converted into its equivalent binary triplet. For example, to change 75_{8} into its binary equivalent, proceed as under:

7	5		
\downarrow	\downarrow		
111	101	\therefore	$75_{8}=111101_{2}$

Similarly, 74.562_{8} can be converted into binary equivalent as under:

7	4	5	6	2		
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow		
111	100	101	110	010	\therefore	$74.562_{8}=111100.101110010_{2}$

Incidentally, it may be noted that number of digits in octal numbers is one-third of that in equivalent binary numbers. In the present case, it is five versus fifteen.

69.24. Usefulness of Octal Number System

We have already discussed the octal number system and conversion from the binary and decimal numbers to octal and vice versa. The ease with which conversions can be made between octal and binary makes the octal system attractive as a "shorthand" means of expressing large binary numbers, In computer work, binary number with up to 64 bits are not uncommon. These binary numbers, as we shall see, do not always represent a numerical quantity but are often some type of code that conveys non numerical information. In computers, binary numbers might represent :

1. actual numerical data
2. numbers corresponding to a location called (address) in memory,
3. an instruction code
4. a code representing alphabetic and other non numerical characters,
5. group of bits representing the status of devices internal or external to the computer

When dealing with a large quantity of binary numbers of many bits, it is convenient and more efficient for us to write the numbers in octal rather than binary. However keep in mind that the digital circuits and systems work strictly in binary. We use octal numbers only as a convenience for the operators of the system.

69.25. Hexadec imal Number System

The characteristics of this system are as under :

1. it has a base of 16 . Hence, it uses sixteen distinct counting digits 0 through 9 and A through F as detailed below :
$0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$
2. place value (or weight) for each digit is in ascending powers of 16 for integers and descending powers of 16 for fractions.
The chief use of this system is in connection with byte-organised machines. It is used for specifying addresses of different binary numbers stored in computer memory.

69.26. How to Count Beyond F in Hex Number System ?

As usual, we resort to 2-digit combinations. After reaching F, we take the second digit followed by the first digit, then second followed by second, then second followed by third and so on. The first few 'hex' numbers and their decimal equivalents are given in Table 69.4.

Hexadecimal	Decimal	Hexadecimal	Decimal	Hexadecimal	Decimal
0	0	B	11	16	22
1	1	C	12	17	23
2	2	D	13	18	24
3	3	E	14	19	25
4	4	F	15	1 A	26
5	5	10	16	1 B	27
6	6	11	17	1 C	28
7	7	12	18	1 D	29
8	8	13	19	1 E	30
9	9	14	20	1 F	31
A	10	15	21	20	32
				21	33

69.27. Binary to Hexadecimal Conversion

The simple method is to split the given binary number into 4-bit groups (supplying 0s from our own side if necessary) and then give each group its 'hex' value as found from Table 69.5.

Table No. $\mathbf{6 9 . 5}$					
Binary	Hex.	Binary	Hex.	Binary	Hex.
0000	0	0110	6	1100	C
0001	1	0111	7	1101	D
0010	2	1000	8	1110	E
0011	3	1001	9	1111	F
0100	4	1010	A	10000	10
0101	5	1011	B	10001	11

Let us see how we would convert 10001100_{2} into its hexadecimal equivalent number. We will first split the given binary number into 4-bit groups and then give each group its proper value from Table 69.5.

1000	1100		
\downarrow	\downarrow		
8	C	\therefore	$10001100_{2}=8 C_{16}$

Let us now consider 1011010111_{2}. Following the above procedure, we have

0010	1101	0111		
\downarrow	\downarrow	\downarrow		
2	D	7	\therefore	$1011010111_{2}=2 \mathrm{D} 7_{16}$

It is seen that two 0 s have been added to complete the 4-bit groups.

69.28. Hexadecimal to Binary Conversion

Here, the procedure is just the reverse of that given in Art. 69.27. Each hexadecimal digit is converted into its equivalent 4-bit binary.

Suppose, we want to convert $23 \mathrm{~A}_{16}$ into its binary equivalent. It can be done as given below:

2	3	A		
\downarrow	\downarrow	\downarrow		
0010	0011	1010	\therefore	$23 \mathrm{~A}_{16}=001000111010_{2}$

Incidentally, hex numbers contain one-fourth the number of bits contained in the equivalent binary number. Optionally, we could drop off the two 0 s in front of the binary equivalent.

69.29. Decimal to Hexadecimal Conversion

Two methods are available for such a conversion. One is to go from decimal to binary and then to hexadecimal. The other method called hex dabble method is similar to the double-dabble (or divide-by-two) method of Art 69.7 except that we use 16 (instead of 2) for successive divisions. As an example let us convert decimal 1983 into hexadecimal by consulting Table No. 69.4 for remainders.

$$
\text { Hence, } 1983_{10}=7 \mathrm{BF}_{16} \quad \begin{array}{rlll}
1983 \div 16 & =123+15 & \rightarrow & \mathrm{~F} \\
123 \div 16 & =7+11 & \rightarrow & \mathrm{~B} \\
7 \div 16 & =0+7 & \rightarrow & 7
\end{array}
$$

69.30. Hexadecimal to Decimal Conversion

Two methods are available for such a conversion. One is to convert from hexadecimal to binary and then to decimal. The other direct method is as follows :

Instead of using powers of 2 , use power of 16 for the weights. Then, sum up the products of hexadecimal digits and their weights to get the decimal equivalent. As an example, let us convert F6D9 to decimal.

$$
\begin{aligned}
\text { F6D9 } & =\mathrm{F}\left(16^{3}\right)+6\left(16^{2}\right)+\mathrm{D}\left(16^{1}\right)+9\left(16^{0}\right)=15 \times 16^{3}+6 \times 16^{2}+13 \times 16^{1}+9 \times 16^{0} \\
& =61,440+1536+208+9=63,193_{10}
\end{aligned}
$$

Example 69.17. Find the binary, octal and hexadecimal equivalents of the following decimal numbers (i) 32 (ii) 256 (iii) 51.
(Digital Computations, Punjab Univ. May 1990)
Solution. (i) Decimal number 32
As seen from Art : $10-7 \quad 32 \quad 16 \quad 8 \quad 4 \quad 2 \quad 1$ $1 \quad \emptyset \quad \emptyset \quad \emptyset \quad \emptyset \quad \emptyset \quad \therefore 32_{10}=100000_{2}$
$\begin{array}{ccccc}\text { For octal conversion : } & 100 & 000 \\ \downarrow & \downarrow\end{array} \quad \therefore \quad 32_{10}=40_{8}$
$4 \quad 0$

Number Systems and Codes

2545
For hexadecimal conversion

0010	0000		
\downarrow	\downarrow	\therefore	$32_{10}=20_{16}$
2	0		

As will be seen, the binary number has been divided into two 4-bit groups for which purpose two 0 s have been added to the left.
(ii) In the same way, it can be found that $256_{10}=100000000_{8}=100_{16}$
(iii) Also $51_{10}=110011_{2}=63_{8}=33_{16}$

Example 69.18. Convert the following numbers to decimal
(i) $(11010)_{2}$
(ii) $(A B 60)_{16}$
(iii) $(777)_{8}$
(Digital Computations, Punjab Univ. 1992)
Solution. (i) For binary to decimal conversion, we will follow the procedure given in Art. 69.4.

$$
\therefore \quad 11010_{2}=16+8+2=26_{10} \quad \begin{array}{lllll}
16 & 8 & A & 2 & 1 \\
16 & 8 & A & 2 & 1
\end{array}
$$

(ii) Following the procedure given in Art. 69.30, we have,

$$
\begin{aligned}
\mathrm{AB} 60_{16} & =\mathrm{A}\left(16^{3}\right)+\mathrm{B}\left(16^{2}\right)+6\left(16^{1}\right)+0\left(16^{0}\right)=10 \times 16^{3}+11 \times 16^{2}+6 \times 16^{1}+0 \times 16^{0} \\
& =43,872_{10}
\end{aligned}
$$

(iii) As per the procedure given in Art. 69.20, $777_{8}=7\left(8^{2}\right)+7\left(8^{1}\right)+7\left(8^{0}\right)=511_{10}$.

Example 69.19. A computer is transmitting the following groups of bytes (each consisting of 8 -bits) to some output device. Give the equivalent octal and hexadecimal listings.

1000	1100	0011	1010
0010	1110	1001	0101
0101	1111	1011	0110
0111	1011	0101	1011

Solution.

Binary		Octal			Hexadecimal	
1000	1100	10	001	100	1000	1100
		2	1	4	8	C
0010	1110	00	101	110	0010	1110
		0	5	6	2	E
0101	1111	01	011	111	0101	1111
0111		1	3	7	5	F
		01	111	011	0111	1011
0011	1010	1	7	3	7	B
		00	111	010	0011	1010
1001	0101	0	7	2	3	A
		10	010	101	1001	0101
1011	0110	2	2	5	9	5
		10	110	110	1011	0110
0101	1011	2	6	6	B	6
		01	011	011	0101	1011
	1	3	3	5	B	

Hence, the groups of given memory bytes when expressed in different number systems become as under :

Binary	Octal	Hexadecimal
10001100	214	8 C
00101110	056	2 E
0101111	137	5 F
01111011	173	7 B
00111010	072	3 A
10010101	225	95
10110110	266	B6
01011011	133	5 B

It is clear from above that so far as the computer operator (or programmer) is concerned, it is much easier to handle this data when expressed in octal or hexadecimal system than in the binary system. For example, it is much easier and less error-prone to write the hexadecimal 8C than the binary 10001100 or 6AF than 011010101111 . Of course, when the need arises, the operator can easily convert from octal or hexadecimal to binary.

69.31. Digital Coding

In digital logic circuits, each number or piece of information is defined by an equivalent combination of binary digits. A complete group of these combinations which represents numbers, letters or symbols is called a digital code.

Codes have been used for security reasons so that others may not be able to read the message even if it is intercepted. In modern digital equipment, codes are used to represent and process numerical information. The choice of a code depends on the function or purpose it has to serve. Some codes are suitable where arithmetic operations are performed whereas others have high efficiency i.e. they give more information using fewer bits.

In certain applications, use of one code or the other simplifies and reduces the circuitry required to process the information. By limiting the switching circuitry, reliability of the digital system is increased. Of continuing importance are other codes which allow for error detection or correction. These codes enable the computers to determine whether the information that was coded and transmitted is received correctly and, if there is an error, to correct it. Since coding itself is a detailed subject, only few of the more familiar codes will be discussed.

69.32. Binary Coded Decimal (BCD) Code

It is a binary code in which each decimal digit is represented by a group of four bits. Since the right-to-left weighting of the 4 -bit positions is $8-4-2-1$, it is also called an 8421 code. It is a weighted numerical code. As said above, here each decimal digit from 0 through 9 requires a 4-bit binary-coded number. For example, the decimal number 35 in $B C D$ code is 0101 . The coding of ten decimal digits is given in Table No. 69.6. Lest you think that $B C D$ code is the same thing as binary numbers, consider the following.

In the binary system, ten is represented by 1010 but in $B C D$ code, it is 00010000 . Seventeen in binary is 10001 but in $B C D$ code, it is 0001 0111. See the difference! Actually, the confu-

Table No. 69.6	
Decimal	$\boldsymbol{B C D}$
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

sion is due to the fact that the first nine numbers in $B C D$ and binary are exactly similar (Table No. 69.6). After that, they become quite different (Table No. 69.7).

It should be realized that with four-bits, sixteen num bers $\left(2^{4}\right)$ can be represented although in the $B C D$ code only ten of these are used. The following six combinations are invalid in the $B C D$ code : $1010,1011,1100,1101,1110$ and 1111.

The main advantage of $B C D$ code is that it can be read and recognised easily although special adders are needed for arithmetic operations.

Any decimal number can be expressed in $B C D$ code by replacing each decimal digit by the appropriate 4-bit combination. Conversely, a $B C D$ number can be easily converted into a decimal number by dividing the coded number into groups of four bits (starting with $L S B$) and then writing down the decimal digit represented by each four-bit group.

Example 69.20. Write the decimal number 369 in BCD code.
Solution. For writing this 3-digit number in $B C D$, the value of each digit must be replaced by its 4-bit equivalent from the $B C D$ code. From Table No. 69.6, we get

$$
\begin{array}{ll}
3=0011, & 6=0110, \\
\therefore \quad 369_{10}=001101101001_{B C D} & 9=1001 \\
&
\end{array}
$$

Example 69.21. Typically digital thermometers use BCD to drive their digital displays. How many $B C D$ bits are required to drive a 3-digit thermometer display? What 12 bits are sent to display for a temperature of 157 degrees.

Solution. There are $12 B C D$ bits required to drive a 3-digit thermometer display because each $B C D$ digit is represented by a group of four bits.

In order to display a temperature of 157 degrees, we know that we have to send 12 -bits. These bits can be determined by replacing each decimal digit by its equivalent four bit binary. Thus,

\[

\]

Example 69.22. Find the equivalent decimal value for the BCD code number 0001010001110101. (Applied Electronics, A.M.I.E.E., London)

Solution. Starting from the $L S B$, the given number can be divided into groups of four bits as 000101000111 0101. As seen from Table No. 69.6,

$$
0001=1
$$

$0111=7$
Hence,

$$
0100=4,
$$

$$
\text { and } 0101=5
$$

$$
0001010001110101_{B C D}=1475_{10}
$$

Example 69.23. (a) Convert the hexadecimal number F8E6 to the corresponding decimal number.
(b) Convert the decimal number 2479 to the corresponding hexadecimal number.
(c) Encode the following decimal numbers into 8421 BCD numbers (i) 59 (ii) 39 and (iii) 584.
(d) Decode the following 8421 BCD numbers (i) 0101 (ii) 0111.
(Digital Computations, Punjab Univ. 1990)

Solution. (a)

$$
\begin{aligned}
\text { F8E6 } & =\mathrm{F}\left(16^{3}\right)+8\left(16^{2}\right)+\mathrm{E}\left(16^{1}\right)+6\left(16^{0}\right) \\
& =15 \times 16^{3}+8 \times 16^{2}+14 \times 16^{1}+6 \times 16^{0}=\mathbf{6 3 , 7 1 8 1 0}
\end{aligned}
$$

(b) We would use the hex-dabble method explained in Art 69.29

$2479 \div 16$	$=154$	+	15		\rightarrow
$154 \div 16$	$=9$	+	10		\rightarrow
A					
$\therefore \quad 2479_{10}=9 \mathrm{AF}_{16} 9 \div 16$	$=0$	+	9	\rightarrow	9

(c) As seen from Table No. 69.6

69.33. Octal Coding

It involves grouping the bits in three's. For example, $\left(\begin{array}{llll}1756\end{array}\right)_{8}=\left(\begin{array}{lll}001 & 111 & 101 \\ 110\end{array}\right)_{2}=$ (001111101110$)_{2}$. Similarly, the 24-bit number stored in the computer memory such as 101010011 100010111000110 can be read in the octal as

101	010	011	100	010	111	000	110
\downarrow							
5	2	3	4	2	7	0	6

Apart from ease of recognition and conversion to binary, one important feature of the octal code is that its numbers are straight binary numbers which can be manipulated mathematically. For example, octal 25 expressed in octal code is 010101 which can be read as binary 010101

$$
\begin{aligned}
(25)_{8} & =2 \times 8^{1}+5 \times 8^{0}(21)_{10} \\
(010101)_{2} & =0 \times 2^{5}+1 \times 2^{4}+0 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}=(21)_{10}
\end{aligned}
$$

You might recall that in $B C D$ code, the resulting number is always a 4 -bit group and a special adder is needed to convert it into decimal. In octal coding, 3-bit grouping is used but the resulting binary number can be considered a single number in natural binary form.

69.34. Hexadecimal Coding

The advantage of this coding is that four bits are expressed by a single character. However, the disadvantage is that new symbols have to be used to represent the values from 1010 to 1111 binary. As seen from Table No. 69.5, the binary number 10100101 is hex number A5. Similarly, hexadecimal number $C 7$ is $(11000111)_{2}$. To prove that the resulting binary number is the same as the hexadecimal value, consider the following example:

$$
\begin{aligned}
& (3 D)_{16}=3 \times 16^{1}+D \times 16^{0}=3 \times 16+13 \times 1=(61)_{10} \\
& (3 D)_{16}=(00111101)_{2}=1 \times 2^{5}+1 \times 2^{4}+1 \times \\
& 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}=(61)_{10}
\end{aligned}
$$

69.35. Excess-3 Code

It is an unweighted code and is a modified form of $B C D$. It is widely used to represent numerical data in digital equip-

Table No. 69.8				
Decimal	XS-3			
3				0110
26			0101	1001
629		1001	0101	1100
3274	0110	0101	1010	0111

69.36. Gray Code

It is an unweighted code for numbers 0 through 9 and is largely used in mechanical switching systems. As seen from Table No. 69.9, only a single bit changes between each successive word. Because of this, the amount of switching is minimized and the reliability of the switching system is improved.

69.37. Excess-3 Gray Code

It is shown in Table No. 69.9 and is the original gray code shifted by three binary combinations. It exhibits the same properties as the Gray Code.

Example 69.24. Express the number 43_{10} in XS 3 code.

Solution. Let us first represent each decimal digit by its 4-bit XS-3 code

$$
4=0111, \quad 3=0110 \quad \therefore \quad 43_{10}=01110110{ }_{\mathrm{xS}-3}
$$

Example 69.25. The number 01101001 is expressed in $\mathrm{XS}-3$ code. What is its decimal value ?
Solution. Starting from least significant bit ($L S B$), the given number is first separated into groups of four and then each group is replaced by its equivalent value i.e. actual value decreased by 3 .

$$
0110=6-3=3 ; 1001=9-3=6
$$

$\therefore \quad 01101001_{X S-3}=(36)_{10}$

69.38. Other Codes

Some of the other codes which are presently popular are given below:
(a) 4-bit codes

The different 4-bit weighted $B C D$ codes for decimal numbers 0 through 9 in use are :5421, $2 * 421,7421,7421$, etc. and are tabulated below:

Table No. $\mathbf{6 9 . 1 0}$				
Decimal	5421	$2 * 421$	7421	$74 \overline{21}$
0	0000	0000	0000	0000
1	0001	0001	0001	0111
2	0010	0010	0010	0110
3	0011	0011	0011	0101
4	0100	0100	0100	0100
5	1000	1011	0101	1010
6	1001	1100	0110	1001
7	1010	1101	1000	1000
8	1011	1110	1001	1111
9	1100	1111	1010	1110

(b) 5-bit Codes
(i) 2-out-of-5 codes is an unweighted $B C D$ code and allows easy error detection. It has been used in communications and telephone operation.
(ii) 51111 Code is a weighted $B C D$ code and is much easier to operate with electronic circuitry.
(iii) Shift-counter (Johnson) Code is an unweighted BCD code and because of its pattern is easily operated on with electronic circuitry.
(c) 7-bit Biquinary Code- it uses a group of seven bits to represent decimal numbers and has code features which provide easy error detection and ease of operation.
(d) Ring-counter Code- it is also called 10-bit code because it uses a group of 10 bits to represent a decimal number. Though it requires as many as 10 positions, the ease of error detection with the code and of operating electronic circuits to implement the code make it quite attractive.
(e) Alphanumeric Code- In addition to numerical data, a computer must be able to handle non-numerical information used in input/output (I/O) processing. In other words, a computer should recognize codes that represent letters of the alphabet, punctuation marks, and other special characters as well as numbers. These codes are called alphanumeric codes. A complete alphanumeric code would include the 26 lowercase letters, 26 uppercase letters, 10 numeric digits, 7 punctuation marks, and anywhere from 20 to 40 other characters, such as,,$+- /$, \#, \$, ", and so on. We can say that an alphanumeric code represents all of the various characters and functions that are found on a computer keyboard. The most widely used alphanumeric code is the American standard code for Information Interchange (ASCII). Another similarly I/O-oriented code is EBCDIC (Extended Binary Coded Decimal Interchange Code).

69.39. ASCII Code

The ASCII code (Pronounced "askee) is a seven-bit code, and so it has $2^{7}(=128)$ possible code groups. This is more than enough to represent all of the standard keyboard characters as well as control functions such as the (RETURN) and LINEFEED) functions. Table No. 69.11 shows a partial listing of the ASCII code. In addition to the binary code group for each character, the table gives the octal and hexadecimal equivalents. The complete list of the ASCII code is given in the Appendix.

Table No. 69.11							
Character	7-Bit ASCII	Octal	Hex	Character	7-Bit ASCII	Octal	Hex
A	1000001	101	41	Y	1011001	131	59
B	1000010	102	42	Z	1011010	132	5A
C	1000011	103	43	0	0110000	060	30
D	1000100	104	44	1	0110001	061	31
E	1000101	105	45	2	0110010	062	32
F	1000110	106	46	3	0110011	063	33
G	1000111	107	47	4	0110100	064	34
H	1001000	110	48	5	0110101	065	35
I	1001001	111	49	6	0110110	066	36
J	1001010	112	4A	7	0110111	067	37
K	1001011	113	4B	8	0111000	070	38
L	1001100	114	4C	9	0111001	071	39
M	1001101	115	4D	blank	0100000	040	20
N	1001110	116	4E	.	0101110	056	2 E
O	1001111	117	4F	(0101000	050	28
P	1010000	120	50	+	0101011	053	2B
Q	1010001	121	51	\$	0100100	044	24
R	1010010	122	52	*	0101010	052	2 A

S	1010011	123	53	$)$	0101001	051	29
T	1010100	124	54	-	0101101	055	2 D
U	1010101	125	55	$/$	0101111	057	2 F
V	1010110	126	56	,	0101100	054	2 C
W	1010111	127	57	$=$	0111101	075	3 D
X	1011000	130	58	<RETURN	0001101	015	0 D
				<LINEFEED>	0001010	012	0 A

Example. 69.26. The following is a message encoded in ASCII code. What is the message ? $10010001000101 \quad 1001100 \quad 10011001001111$

Solution. Convert each seven-bit code to its equivalent hexadecimal number. The resulting values are:

$$
48 \quad 45 \quad 4 \mathrm{C} \quad 4 \mathrm{C} \quad 4 \mathrm{~F}
$$

Now locate these hexadecimal values in Table No. 19.11 and determine the character represented by each. The results are:
"HE L L O".

Tutorial Problems No. 69.1

1. Find the decimal equivalents of the following binary numbers:
(a) 101
(b) 1001
(c) 10.011
[(a) 510 (b) 910 (c) 3.037510]
2. What are the decimal equivalents of the following binary numbers?
(a) 1111
(b) 10100
(c) 11011001
(d) 10011001
((a) 1510 (b) 2010 (c) 10910 (d) 15310]
3. Express the following binary numbers into their equivalent decimal numbers:
(a) 11.01
(b) 101.11
(c) $110.01 \quad[(a) 3.2510$ (b) 5.7510
(c) 6.2510$]$
4. Convert the following decimal numbers into their binary equivalents:
(a) 25
(b) 125
(c) 0.85
[(a) 110012 (b) 11111012 (c) 0.1101102$]$
5. What are the binary equivalents of the following decimal numbers ?
(a) 27
(b) 92
(c) 64
[(a) 110112 (b) 10111002 (c) 10000002]
6. Perform the following binary additions:
(a) $1011+1001$
(b) $1011+110$
(c) $101101+1101101$
(d) $1011.01+1001.11$
(e) $0.0011+0.1110$
(f) $1111+111+1111$
[(a) 101002 (b) 100012 (c) 11000112 (d) 101012 (e) 1.00012 (f) 11010012]
7. Add the following binary numbers 1011 and 1001
[10100](Digital Computations, Punjab Univ. Dec.)
8. Perform the following binary subtractions :
(a) 1101-1011
(b) 111-101
(c) 1000-11
(d) 101011-10010 [(a) 00102 (b) 0102 (c) 010012 (d) 0110012]
9. Carry out the following subtractions using binary number system:
(a) $64_{10}-32_{10}$
(b) $128_{10}-64_{10}$
(c) $93.5_{10}-42.75_{10}$
(d) $7_{10}-11_{10}$
[(a) 1000002 (b) 10000002 (c) 110010.112 (d) Ä1002]
10. Subtract the following binary numbers: $100011-111010$
[-10111](Digital Computations, Punjab Univ., Dec. 1984)
11. Find the 1 's complements of the following binary numbers:
(a) 01101
(b) 1101
(c) 1001
(d) 1010
[(a) 100102 (b) 00102 (c) 01102 (d) 01012]
12. What are 2 's complements of the following binary numbers ?
(a) 1011
(b) 11011
(c) 11011.01
(d) 10011.11
[(a) 01012 (b) 001012 (c) 00100.112 (d) 01100.012]
13. Use the 1's and 2's complements of the following binary subtractions :
(i) 1111 - 1011
(ii) 110011 - 100101
(ii) $100011-111010$
[(i) 0100 (ii) 1110 (iii) -10111] (Digital Computations, Punjab Univ. Dec.)
14. Multiply the following binary numbers:
(a) 1100×101
(b) 10101×101
(c) 10111×101
(d) 1110×111
[(a) 1111002 (b) 11010012 (c) 11100112 (d) 11000102]
15. Perform the following binary divisions :
(a) $11011 \div 100$
(b) $1110011 \div 101$
(c) $1100010 \div 111$
[(a) 110.112 (b) 101112 (c) 11102]
16. Convert the following binary numbers into their octal equivalents :
(a) 1001
(b) 11011
(c) 10101111
(d) 1101.0110111
(e) 11111011110101
[(a) 118 (b) 338 (c) 258 (d) 15.3348 (e) 373658$]$
17. Convert the undergiven octal numbers into their binary equivalents:
(a) 13
(b) 11
(c) 713
(d) 3674
[(a) 0112 (b) 10012 (c) 1110010112 (d) 11110111 1002]
18. Convert the following numbers :
(a) 357_{8} to decimal
(b) 6421_{8} to decimal
(c) 1359_{10} to octal
(d) 7777_{10} to octal
[(a) 23910 (b) 334510 (c) 25178 (d) 171418]
19. Convert the following real numbers to the binary numbers:
(i) 12.0
(ii) 25.0
(iii) 0.125
[(i) 1100 (ii) 11001 (iii) 0.001] (Digital Computations, Punjab Univ.)
20. Convert the following binary numbers into their equivalent hexadecimal numbers:
(a) 11010111
(b) 10100110
(c) 10011110
(d) 11001111
[(a) D716 (b) A616 (c) 9E16 (d) CF16]
21. Convert the following decimal numbers to binary numbers by converting them to octal, then to binary.
(i) 850
(ii) 7563
[(a) 1101010010 (ii) 1110110001011$]$ (Digital Computations, Punjab Univ. Dec.)
22. Convert the following numbers to decimal
(i) $(11010)_{2}$
(ii) $(777)_{8}$
[(i) 26 (ii) 511] (Digital Computations, Punjab Univ. June)
23. What are the binary equivalents of the following hexadecimal numbers ?
(a) 9 F
(b) A2
(c) ED
(d) 27
[(a) 100111112 (b) 101000102 (c) 111011012 (d) 001101112]
24. Convert the decimal number 4397 and the octal number 2735 to hexadecimal numbers.
[(i) 5DD (ii) 12D] (Power \& Digital Electronics, Punjab Univ. Dec. 1984)
25. Convert the following decimal numbers into $B C D$ code
(a) 18
(ii) 92
(iii) 321 and
(iv) 4721
[(i) 00011000 (ii) 10010010 (iii) 001100100001 (iv) 0100011100100001]
26. Find the decimal values for the BCD-coded numbers
(i) 01101000
(ii) 011101001001 and
(iii) 1000010001110110]
[(i) 68 (ii) 749 (iii) 8476$]$
27. Convert the following hexadecimal numbers into binary numbers:
(i) E 5
(ii) B4D
(iii) 7AF4
(Digital Computations, Punjab Univ. May)
[(i) 11100101 (ii) 101101001101 (iii) 0111101011110100]
28. Encode the following decimal numbers into 8421 numbers.
(i) 45
(ii) 732
(iii) 94,685
(Digital Computations, Punjab Univ. May)
[(i) 01000101 (ii) 11100110010 (iii) 0010100011010000101]
29. Decode the following $8421 B C D$ numbers :
(i) 001110000111 (ii) 100101100111100001110011
[(i) 387 (ii) 967,873] (Digital Computations, Punjab Univ. Dec.)
30. Decode the following $8421 B C D$ numbers :
(i) 0011
(ii) 0111
(iii) 0101
(iv) 0110
(v) 1000
[(i) 3 (ii) 7 (iii) 5 (iv) 6 (v) 8] (Di
31. Convert the following binary numbers into octal code :
(i) 100110111 and
(ii) 101010001
[(i) 4678
(ii) 5218]
32. Convert the following decimal numbers into XS-3 code:
(i) 35
(ii) 159
(iii) 340
[(i) 01101000 (ii) 010010001100 (iii) 011001110011$]$
33. What is the decimal value of the following numbers expressed in Excess- 3 code ?
(i) 10010110 and
(ii) 100101011100
[(i) 63 (ii) 629]

OBJECTIVE TESTS - 69

1. The digital systems usually operate on \qquad ..system.
(a) binary
(b) decimal
(c) octal
(d) hexadecimal.
2. The binary system uses powers offor positional values.
(a) 2
(b) 10
(c) 8
(d) 16
3. After counting $0,1,10,11$, the next binary number is
(a) 12
(b) 100
(c) 101
(d) 110 .
4. The number 1000_{2} is equivalent to decimal number
(a) one thousand
(b) eight
(c) four
(d) sixteen.
5. In binary numbers, shifting the binary point one place to the right.
(a) multiplies by 2
(b) divides by 2
(c) decreases by 10
(d) increases by 10.
6. The binary addition $1+1+1$ gives
(a) 111
(b) 10
(c) 110
(d) 11
7. The cumulative addition of the four binary bits $(1+1+1+1)$ gives
(a) 1111
(b) 111
(c) 100
(d) 1001
8. The result of binary subtraction $(100-011)$ is
(a) -111
(b) 111
(c) 011
(d) 001 .
9. The 2 's complement of 1000_{2} is
(a) 0111
(b) 0101
(c) 1000
(d) 0001
10. The chief reason why digital computers use complemental subtraction is that it
(a) simplifies their circuitry
(b) is a very simple process
(c) can handle negative numbers easily
(d) avoids direct subtraction.
11. The result of binary multiplication $111_{2} \times 10_{2}$ is
(a) 1101
(b) 0110
(c) 1001
(d) 1110
12. The binary division $11000_{2} \div 100_{2}$ gives
(a) 110
(b) 1100
(c) 11
(d) 101
13. The number 12_{8} is equivalent to decimal
(a) 12
(b) 20
(c) 10
(d) 4
14. The number 100101_{2} is equivalent to octal
(a) 54
(b) 45
(c) 37
(d) 25.
15. The number 17_{8} is equivalent to binary
(a) 111
(b) 1110
(c) 10000
(d) 1111.
16. Which of the following is NOT an octal number?
(a) 19
(b) 77
(c) 15
(d) 101
17. Hexadecimal number system is used as a shorthand language for representingnumbers.
(a) decimal
(b) binary
(c) octal
(d) large
18. The binary equivalent of A_{16} is
(a) 1010
(b) 1011
(c) 1000
(d) 1110 .
19. $B C D$ code is
(a) non-weighted
(b) the same thing as binary numbers
(c) a binary code
(d) an alphanumeric code.
20. Which of the following 4-bit combinations is/ are invalid in the $B C D$ code ?
(a) 1010
(b) 0010
(c) 0101
(d) 1000 .
21. Octal coding involves grouping the bits in
(a) 5 's
(b) 7's
(c) 4 's
(d) 3's.
22. In Excess-3 code each coded number isthan in BCD code
(a) four larger
(b) three smaller
(c) three larger
(d) much larger.
23. Which numbering system uses numbers and
letters as symbols ?
(a) decimal
(b) binary
(c) octal
(d) hexadecimal
24. To convert a whole decimal number into a hexadecimal equivalent, one should divide the decimal value by......
(a) 2
(b) 8
(c) 10
(d) 16 .

ANSWERS

1. (a) 2. (a)
2. (b)
3. (b)
4. (a)
5. (d)
6. (b)
7. (d)
8. (c)
9. (a)
10. (d) 12. (a)
11. (c)
12. (b)
13. (d)
14. (a)
15. (a)
16. (a)
17. (c)
18. (a)
19. (d)
20. (c)
21. (d)
22. (a)

[^0]: * It is so because there is 0 at the interger position i.e. to the left of the decimal point.

