CH A P TE R

Learning Objectives

> Bipolar Junction Transistor
> Transistor Biasing
> Transistor Currents
> Transistor Circuit Configuratrons
> CB Configuration
> CE Configuration
$>$ Relation between α and β
> CC Configuration
$>$ Relation between Transistor Currents
> Leakage Currents in a Transistor
> Thermal Runaway
$>$ Transistor Static Characterstics
$>$ Common Base Test Circuit
> Common Base Static Characteristics
$>$ Common Emitter Static Characteristics
$>$ Common Collector Static Characteristic
> Different Ways of Drawing Transistor Circuits
> The Beta Rule
$>$ Importance of $V_{C E}$
$>$ Cut-off and Saturation Points
> BJT Operating Regions
> Active Region DC Model of BUT
$>$ BJT Switches
> Normal DC Voltage Transistor Indications
$>$ Transistor Fault Location
> Increase/Decrease Notation

BIPOLAR JUNCTION TRANSISTOR

\qquad
(1) Bipolar junction transistor is used in two broad areas-as a linear amplifier to boost or amplify an electrical signal and as an electronic switch

57.1. BipolarJ unction Transistor

The transistor was invented by a team of three scientists at Bell Laboratories, USA in 1947. Although the first transistor was not a bipolar junction device, yet it was the beginning of a technological revolution that is still continuing in the twenty first century. All of the complex electronic devices and systems developed or in use today, are an outgrowth of early developments in semiconductor transistors.

There are two basic types of transistors : (1) the bipolar junction transistor (BJT) which we will study in this chapter and the field-effect transistor (FET) which is covered in chapter 13. The bipolar junction transistor is used in two broad areas of electronics : (1) as a linear amplifier to boost an electrical signal and (2) as an electronic switch.

Basically, the bipolar junction transistor consists of two back-toback $P-N$ junctions manufactured in a single piece of a semiconductor crystal. These two junctions give rise to three regions called emitter, base and collector. As shown in Fig. 57.1 (a) junction transistor is simply a sandwich of one type of semiconductor material between two layers of the other type. Fig. 57.1 (a) shows a layer of N-type material sandwiched between two layers of P-type material. It is described as a $P N P$ transistor. Fig. $57.1(b)$ shown an $N P N$ - transistor consisting of a layer of P-type material sandwiched between two layers of N-type material.

The emitter, base and collector are provided with terminals which
 are labelled as E, B and C. The two junctions are : emitter-base (E / B) junction and collector-base (C / B) junction.

The symbols employed for $P N P$ and NPN transistors are also shown in Fig. 57.1. The arrowhead is always at the emit- Emitter ter (not at the collector) and in each case, its direction indicates the conventional direction of current flow. For a PNP transistor, arrowhead points from emitter to base meaning that emitter is positive with respect to base (and also with respect to collector)* For NPN transistor, it points from base to emitter meaning that base (and collector as well)* is positive with respect to the emitter.

1. Emitter

It is more heavily doped than any of the other regions because its main function is to supply majority charge carries (either electrons or holes) to the base. 2. Base

It forms the middle section of the transistor. It is very thin $\left(10^{-6} \mathrm{~m}\right)$ as compared to either the emitter or collector and is very lightly-doped.

3. Collector

Its main function (as indicated by

Fig. 57.1 its name) is to collect majority charge carriers coming from the emitter and passing through the base.

[^0]

In most transistors, collector region is made physically larger than the emitter region because it has to dissipate much greater power. Because of this difference, there is no possibility of inverting the transistor i.e. making its collector the emitter and its emitter the collector. Fig 57.1 (c), shows the picture of C1815 (front and the back view) transistor.

57.2. Transistor Biasing

For proper working of a transistor, it is essential to apply voltages of correct polarity across its two junctions. It is worthwhile to remember that for normal operation;

1. emitter-base junction is always forwardbiased and
2. collector-base junction is always re-verse-biased.

This type of biasing is known as $F R$ biasing.

In Fig. 57.2, two batteries respectively provide the dc emitter supply voltage $V_{E E}$ and collector supply voltage $V_{C C}$ for properly biasing the two junctions of the transistor. In Fig. 57.2 (a), Positive terminal of $V_{E E}$ is connected to \mathbf{P}-type emitter in order to repel or Push holes into the base.

The negative terminal of $V_{C C}$ is connected to the collector so that it may attract or pull holes through the base. Similar considerations apply to the NPN transistor of Fig. 57.2 (b). It must be remembered that a transistor will never conduct any current if its emitter-base junction is not for-ward-biased.* Also refer to the picture shown in Fig. 57.2 (c).

57.3. Important Biasing Rule

For a PNP transistor, both collector and base are negative with respect to the emmitter (the letter N of Negative being the same as the middle letter of $P N P$). Of course, collector is more negative than base [Fig. 57.3 (a)]. Similarly, for $N P N$ transistor, both collector and base are positive with respect to the emitter (the letter \mathbf{P} of Positive being the same as the middle letter of NPN). Again, collector is more positive than the base as shown in Fig. 57.3 (b).

(a)

Fig. 57.3
Fig. 57.4
$\bar{*} \overline{\text { There would be no current }} \overline{\text { due to majority charge carriers. However, there would be an extremely small }}$ current due to minority charge carriers which is called leakage current of the transistor (Art. 57.12).

It may be noted that different potentials have been designated by double subscripts. The first subscript always represents the point or terminal which is more positive (or less negative) than the point or terminal represented by the second subscript. For example, in Fig. 57.3 (a), the potential difference between emitter and base is written as $V_{E B}\left(\right.$ and not $\left.V_{B E}\right)$ because emitter is positive with respect to base. Now, between the base and collector themselves, collector is more negative than base. Hence, their potential difference is written as $V_{B C}$ and not as $V_{C B}$. Same is the case with voltages marked in Fig. 57.4.

57.4. Transistor Currents

The three primary currents which flow in a properly-biased transistor are I_{E}, I_{B} and I_{C}. In Fig. 57.5 (a) are shown the directions of flow as well as relative magnitudes of these currents for a PNP transistor connected in the common-base mode. It is seen that again,

$$
I_{E}=I_{B}+I_{C}
$$

It means that a small part (about $1-2 \%$) of emitter current goes to supply base current and the remaining major part ($98-99 \%$) goes to supply collector current.

Moreover, I_{E} flows into the transistor whereas both I_{B} and I_{C} flow out of it.
Fig. $57.5(b)$ shows the flow of currents in the same transistor when connected in the com-mon-emitter mode. It is seen that again, $\quad I_{E}=I_{B}+I_{C}$

By normal convention, currents flowing into a transistor are taken as positive whereas those flowing out of it are taken as negative. Hence, I_{E} is positive whereas both I_{B} and I_{C} are negative. Applying Kirchhoff's Current Law, we have
$I_{E}+\left(-I_{B}\right)+\left(-I_{C}\right)=0 \quad$ or $\quad I_{E}-I_{B}-I_{C}=0 \quad$ or $\quad I_{E}=I_{B}+I_{C}$

Fig. 57.5
This statement is true regardless of transistor type or transistor configuration.

Note. For the time being, we have not taken into account the leakage currents which exist in a transistor (Art. 57.12).

57.5. Summing Up

The four basic guideposts about all transistor circuits are :

1. conventional current flows along the arrow whereas electrons flow against it;
2. E / B junction is always forward-biased;
3. C / B junction is always reverse-biased;
4. $\mathrm{I}_{\mathrm{E}}=I_{B}+I_{C}$.

57.6. Transistor Circuit Configurations

Basically, there are three types of circuit connections (called configurations) for operating a transistor.

1. common-base $(C B)$, 2. common-emitter $(C E)$, 3. common-collector $(C C)$.

The term 'common' is used to denote the electrode that is common to the input and output circuits. Because the common electrode is generally grounded, these modes of operation are frequently referred to as grounded-base, grounded-emitter and grounded-collector configurations as shown in Fig. 57.6 for a $P N P$ - transistor.

Since a transistor is a 3-terminal (and not a 4-terminal) device, one of its terminals has to be common to the input and output circuits.

57.7. CB Configuration

In this configuration, emitter current I_{E} is the input current and collector current I_{C} is the output current. The input signal is applied between the emitter and base whereas output is taken out from the collector and base as shown in Fig. 57.6 (a).

The ratio of the collector current to the emitter current is called dc alpha $\left(\alpha_{\mathrm{dc}}\right)$ of a transistor.

$$
\therefore \quad \alpha_{d c}^{*}=\frac{-I_{C}}{I_{E}}
$$

The negative sign is due to the fact that current I_{E} flows into the transistor whereas I_{C} flows out of it. Hence, I_{E} is taken as positive and I_{C} as negative.

$$
\therefore
$$

$$
I_{C}=-\alpha_{\mathrm{dc}} \cdot I_{E}
$$

If we write adc simply as $\alpha^{* *}$, then $\alpha=I_{E} / I_{C}$
It is also called forward current transfer ratio $\left(-h_{F B}\right)$. In $h_{F B}$, subscript F stands for forward and B for common-base. The subscript d.c. on a signifies that this ratio is defined from dc values of I_{C} and I_{E}.

Fig. 57.6
The α of a tranistor is a measure of the quality of a transistor ; higher the value of α, better the transistor in the sense that collector current more closely equals the emitter current. Its value ranges

* More accurately, $\alpha_{d c}=\frac{I_{C}-I_{C B O}}{I_{E}}$
...Art.57.12
** Negative sign has been omitted, since we are here concerned with only magnitudes of the currents involved.

from 0.95 to 0.999 . Obviously, it applies only to $C B$ configuration of a transistor. As seen from above and Fig. 57.7.

$$
I_{C}=\alpha I_{E} . \quad \text { Now, } \quad I_{B}=I_{E}-\alpha I_{E}=(1-\alpha) I_{E}
$$

Fig. 57.7
Incidentally, there is also an a.c. α for a transistor. It refers to the ratio of change in collector current to the change in emitter current.

$$
\therefore \quad \alpha_{a c}=\frac{-\Delta I_{C}}{\Delta I_{E}}
$$

It is also, known as short-circuit gain of a transistor and is written as $-h_{f b}$. It may be noted that upper case subscript ' $F B$ ' indicates dc value whereas lower case subscript ' $f b$ ' indicates ac value. For all practical purposes, $\alpha_{d c}=\alpha_{a c}=\alpha$.

Example 57.1. Following current readings are obtained in a transistor connected in CB configuration: $I_{E}=2 \mathrm{~mA}$ and $I_{B}=20 \mathrm{~mA}$. Compute the values of α and I_{C}.
(Electronics-II, Punjab Univ. 1992)
Solution. $I_{C}=I_{E}-I_{B}=2 \times 10^{-3}-20 \times 10^{-6}=1.98 \mathrm{~mA}$

$$
\alpha=I_{C} / I_{E}^{D}=1.98 / 2=0.99
$$

57.8. CEConfiguration

Here, input signal is applied between the base and emitter and output signal is taken out from the collector and emitter circuit. As seen from Fig. $57.6(b), I_{B}$ is the input current and I_{C} is the output current.

The ratio of the d.c. collector current to dc base current is called dc beta ($\beta_{d c}$) or just β of the transistor.
$\therefore \quad \beta=-I_{C} /-I_{B}=I_{C} / I_{B}$ or $I_{C}=\beta I_{B} \quad$ - Fig. 57.8 (a)

It is also called common-emitter d.c. forward transfer ratio and is written as $h_{F E}$. It is possible for β to have as high a value as 500 .

While analysing ac operation of a transistor, we use ac β which is given by $\beta_{\mathrm{ac}}=\Delta I_{C} / \Delta I_{B}$.

(a)

(b)

Fig. 57.8
It is also written as $h_{f e}$.
The flow of various currents in a $C E$ configuration both for $P N P$ and $N P N$ transistor is shown in Fig. 57.8. As seen

$$
I_{E}=I_{B}+I_{C}=I_{B}+\beta I_{B}=(1+\beta) I_{B}
$$

57.9. Relation Between α and β

$$
\beta=\frac{I_{C}}{I_{B}} \quad \text { and } \quad \alpha=\frac{I_{C}}{I_{E}} \quad \therefore \quad \frac{\beta}{\alpha}=\frac{I_{E}}{I_{B}}
$$

Now, $\quad I_{B}=I_{E}-I_{C} \quad \therefore \quad \beta=\frac{I_{C}}{I_{E}-I_{C}}=\frac{I_{C} / I_{E}}{I_{E} / I_{E}-I_{C} / I_{E}} \quad$ or $\quad \beta=\frac{\alpha}{1-\alpha}$
Cross-multiplying the above equation and simplifying it, we get
$\beta(1-\mathrm{a})=\alpha$ or $\beta=\alpha(1+\beta) \quad$ or $\quad \alpha=\beta /(1+\beta)$
It is seen from the about 2 equations that $1-\alpha=1 /(1+\beta)$

57.10. CC Configuration

In this case, input signal is applied between base and collector and output signal is taken out from emitter-collector circuit [Fig. 57.6 (c)]. Conventionally speaking, here I_{B} is the input current and I_{E} is the output current as shown in Fig. 57.9. The current gain of the circuit is
$\frac{I_{E}}{I_{B}}=\frac{I_{E}}{I_{C}} \cdot \frac{I_{C}}{I_{B}}=\frac{\beta}{\alpha}=\frac{\beta}{\beta /(1+\beta)}=(1+\beta)$

Fig. 57.9

The flow paths of various currents in a $C C$ configuration are shown in Fig. 57.9. It is seen that $I_{E}=I_{B}+I_{C}=I_{B}+\beta I_{B}=(1+\beta) I_{B}$
\therefore output current $=(1+\beta) \times$ input current.

57.11. Relations Between Transistor Currents

While deriving various equations, following definitions should be kept in mind.

$$
\alpha=\frac{I_{C}}{I_{E}}, \quad \beta=\frac{I_{C}}{I_{B}}, \quad \alpha=\frac{\beta}{(1+\beta)} \quad \text { and } \beta=\frac{\alpha}{(1-\alpha)}
$$

(i) $I_{C}=\beta I_{B}=\alpha I_{E}=\frac{\beta}{1+\beta} I_{E}$
(ii) $I_{B}=\frac{I_{C}}{\beta}=\frac{I_{E}}{1+\beta}=(1-\alpha) I_{E}$
(iii) $I_{E}=\frac{I_{C}}{\alpha}=\frac{1+\beta}{\beta} I_{C}=(1+\beta) I_{B}=\frac{I_{B}}{(1-\alpha)}$
(iv) The three transistor d.c. currents always bear the following ratio*
$I_{E}: I_{B}: I_{C} \quad:: \quad 1:(1-\alpha): \alpha$
Incidentally, it may be noted that for ac currents, small letters i_{e}, i_{b} and i_{c} are used.

(i) $(1-\alpha) I_{E}$ which becomes base current I_{B} in the external circuit and
(ii) αI_{E} which becomes collector current I_{C} in the external circuit.

* It reminds us of the power distribution relationship in an induction motor.

As mentioned earlier (Art. 57.2), though C / B junction is reverse-biased for majority charge carriers (i.e. holes in this case), it is forward-biased so far as thermally-generated minority charge carriers (i.e. electrons in this case) are concerned. This current flows even when emitter is disconnected from its dc supply as shown in Fig. 57.10 (a) where switch, S_{1} is open. It flows in the same direction* as the collector current of majority carriers. It is called leakage current $I_{C B O}$. The subscripts $C B O$ stand for 'Collector to Base with emitter Open.' Very often, it is simply written as $I_{C O}$.

Fig. 57.11
It should be noted that
(i) $I_{C B O}$ is exactly like the reverse saturation current I_{S} or I_{0} of a reverse-biased diode discussed in Art. 57.1.
(ii) $I_{C B O}$ is extremely temperature-dependent because it is made up of thermally-generated minority carriers. As mentioned earlier, $I_{C B O}$ doubles for every $10^{\circ} \mathrm{C}$ rise in temperature for Ge and $6^{\circ} \mathrm{C}$ for Si .

If we take into account the leakage current, the current distribution in a $C B$ transistor circuit becomes as shown in Fig. 57.11 both for PNP and NPN type transistors.

It is seen that total collector current is actually the sum of two components :
(i) current produced by normal transistor action i.e. component controlled by emitter current. Its value is a I_{E} and is due to majority carriers.
(ii) temperature-dependent leakage current $I_{C O}$ due to minority carriers.

$$
\therefore \quad I_{C}=\alpha I_{E}+I_{C O} \quad \ldots(i) \quad \therefore \quad \alpha=\frac{I_{C}-I_{C O}}{I_{E}}
$$

Since $I_{C O}$ « I_{C},
hence $\alpha \cong I_{C} / I_{E}$
(iii) Substituting the value of $I_{E}=\left(I_{C}+I_{B}\right)$ in Eq. (i) above, we get

$$
\begin{aligned}
& I_{C}=\left(I_{C}+I_{B}\right)+I_{C O} & \text { or } \quad I_{C}(1-\alpha)=\alpha I_{B}+I_{C O} \\
\therefore & I_{C}=\frac{\alpha I_{B}}{1-\alpha}+\frac{I_{C O}}{1-\alpha} &
\end{aligned}
$$

(iv) Eliminating I_{C} from Eq. (i) above, we get

$$
\left(I_{E}-I_{B}\right)=\alpha I_{E}+I_{C O} \quad \text { or } \quad I_{B}=(1-\alpha) I_{E}-I_{C O}
$$

(b) CE Circuit

In Fig. 57.12 (a) is shown a common-emitter circuit of an NPN transistor whose base lead is

* Actually, electrons (which form minority charge carriers in collector) flow from negative terminal of collector battery, to collector, then to base through C / B junction and finally, to positive terminal of $V_{C C}$. However, conventional current flows in the opposite direction as shown by dotted lien in Fig. 57.10 (a)

open. It is found that despite $I_{B}=0$, there is a leakage current from collector to emitter. It is called $I_{C E O}$, the subscripts $C E O$ standing for 'Collector to Emitter with base Open'.

Taking this leakage current into account, the current distribution through a $C E$ circuit becomes as shown in Fig. 57.12 (c).

$$
\begin{align*}
I_{C} & =\beta I_{B}+I_{C E O}=\beta I_{B}+(1+\beta) I_{C O}=\beta I_{B}+I_{C O} /(1-\alpha) \\
\therefore \quad I_{C} & =\frac{\alpha I_{B}}{1-\alpha}+\frac{I_{C O}}{1-\alpha} \tag{i}
\end{align*}
$$

Fig. 57.12
Now, $\quad \beta I_{B}=\alpha I_{E}$. Substituting this value above, we get,

$$
I_{C}=\alpha I_{E}+I_{C E O} \quad \text { Also, } I_{B}=I_{E}-I_{C}
$$

Substituting the value of I_{C} from above, we have
(ii) $I_{B}=I_{E}-\alpha I_{E}-I_{C E O}=(1-\alpha) I_{E}-I_{\text {CEO }}$

57.13. Thermal Runa way

As seen from Art. 57.12, for a $C E$ circuit

$$
I_{C}=\beta I_{B}+(1+\beta) I_{C O}
$$

The leakage current is extremely temperature-dependent. It almost doubles for every $6^{\circ} \mathrm{C}$ rise in temperature in Ge and for every $10^{\circ} \mathrm{C}$ rise in Si. Any increase in $I_{C O}$ is magnified $(1+\beta)$ times $i . e$. 300 to 500 times. Even a slight increase in $I_{C O}$ will affect I_{C} considerably. As I_{C} increases, collector power dissipation increases which raises the operating temperature that leads to further increase in I_{C}. If this succession of increases is allowed to continue, soon I_{C} will increase beyond safe operating value thereby damaging the transistor itself-a condition known as thermal runaway. Hence, some form of stabilization is necessary to prevent this thermal runaway.

Example 57.2. The reverse saturation current of an NPN transistor in common-base circuit is $12.5 \mu A$. For an emitter current of $2 m A$, collector current is 1.97 mA . Determine the current gain and base current.
(Electronics-1, Gwalior Univ. 1988)
Solution. Given : $I_{\text {CBO }}=12.5 \mu \mathrm{~A} ; \quad I_{E}=2 \mathrm{~mA}, \quad I_{C}=1.97 \mathrm{~mA} ; \alpha=?, I_{B}=$?

$$
\begin{aligned}
& I_{C}=\alpha I_{E}+I_{C B O} \quad \therefore \quad \alpha=\frac{I_{C}-I_{C B O}}{I_{E}}=\frac{1.97-12.5 \times 10^{-3}}{2}=0.978 \\
& \quad I_{B}=I_{E}-I_{C}=2-1.97=0.03 \mathrm{~mA} .
\end{aligned}
$$

Example. 57.3. Derive an expression for forward current gain and leakage current of com-mon-emitter configuration in terms of current gain and leakage current of common-base configuration. If $a=0.98, I_{C B O}=5 \mathrm{~mA}$, calculate b and ICEO.
(Electronics-I, Mysore Univ. 1990)
Solution. $\quad \beta=\alpha /(1-\alpha) \quad=0.98 /(1-0.98)=49$

$$
I_{C E O}=(1+\beta) I_{C O}=(1+49) \times 5=250 \mu \mathrm{~A}=0.25 \mathrm{~mA} .
$$

Example 57.4. For a transistor, $I_{B}=100 \mu \mathrm{~A}, \alpha_{d c}=0.98$ and $I_{C O}=5 \mu \mathrm{~A}$. Find the values of I_{C} and I_{E}.

Solution. As seen from Art. 57.12, $I_{C}=\frac{\alpha I_{B}}{1-\alpha}+\frac{I_{C O}}{1-\alpha}=\frac{0.98 \times 100}{1-0.98}+\frac{5}{1-0.98}=5.15 \mathrm{~mA}$

$$
I_{E}=I_{C}+I_{B}=5.15+100 \times 10^{-3}=\mathbf{5 . 2 5} \mathrm{mA} .
$$

Example 57.5. A transistor operating in $C B$ configuration has $I_{C}=2.98 \mathrm{~mA}, I_{E}=3.00 \mathrm{~mA}$ and $I_{C O}=0.01 \mathrm{~mA}$. What current will flow in the collector circuit of this transistor when connected in CE configuration with a base current of $30 \mu \mathrm{~A}$. (Electronics-II, M.S. Univ. Vadodra 1990)

Solution. For $C E$ configuration, $I_{C}=\beta I_{B}+(1+\beta) I_{C O}$
Let us find the value of β from data given for $C B$ configuration. For such a circuit $I_{C}=\alpha I_{E}+$ $I_{C O}$ or $2.98=\alpha \times 3+0.01 ; \alpha=0.99 ; \beta=\alpha /(1-\alpha)=0.99 /(1-0.09)=99$.
\therefore For $C E$ circuit, $\mathrm{I}_{\mathrm{C}}=99 \times 0.03+(1+99) \times 0.01=3.97 \mathrm{~mA}$.
Example 57.6. For a certain transistor, $I_{C}=5.505 \mathrm{~mA}, I B=50 \mathrm{~mA}, I_{C O}=5 \mathrm{~mA}$. Determine (i) values of α, β and $I_{E}(i i)$ the new level of I_{B} required to make $I_{C}=10 \mathrm{~mA}$.

Solution. (i) $I_{C}=\beta I_{B}+(1+\beta) I_{C O}$ or $5.505 \times 10^{3}=\beta \times 50+(1+\beta) \times 5 \therefore \beta=100$

$$
\begin{aligned}
& \text { Now, } I_{E}=I_{C}+I_{B}=5.505+50 \times 10^{-3}=5.555 \mathrm{~mA} . \\
& \text { Also, } I_{C}=\alpha I_{E}+I_{C O} ; 5.505=\alpha \times 5.555+5 \times 10^{-3} \quad \therefore \quad \alpha=5.500 / 5.555=0.99 \\
& \begin{array}{ll}
\text { (ii) As seen from Art. } 7.12, & I_{C}=\beta I_{\mathrm{B}}+(1+\beta) I_{C O} \\
\therefore \quad 10=100 I_{B}+101 \times 5 \times 10^{-3} ; & I_{B}=0.09495 \mathrm{~mA}=94.95 \mu \mathrm{~A} .
\end{array}
\end{aligned}
$$

Example. 57.7. Discuss the operation of a PNP transistor.
The reverse saturation current in a PNP germanium transistor type OC 71 is $8 \mu A$. If the transistor common base current gain is 0.979 , calculate the collector and emitter current for $40 \mu \mathrm{~A}$ base current. What is the collector current when base current is zero?
(Electronics-1, Gwalior Univ. 1986)
Solution. Given : $I_{C O}=8 \mu \mathrm{~A}=0.008 \mu \mathrm{~A}, \alpha=0.979 ; I_{B}=40 \mu \mathrm{~A}=0.04 \mathrm{~mA}$
In a $C E$ circuit: $I_{C}=\beta I_{B}+I_{C E O}=\beta I_{B}+I_{C} /(1-\alpha)$.
Now, $\quad \beta=\alpha /(1-\alpha)=0.979 /(1-0.979)=46.6$
$\therefore \quad I_{C}=46.6 \times 0.04+(1+46.6) \times 0.008=\mathbf{1 . 9} \mathrm{mA} ; I_{E}=I_{C}+I_{B}=1.9+0.04=1.94 \mathrm{~mA}$

57.14. Transistor Static Characteristics

There are the curves which represents relationship between different d.c. currents and voltages of a transistor. These are helpful in studying the operation of a transistor when connected in a circuit. The three important characteristics of a transistor are :

1. Input characteristic, 2. Output characteristic, 3. Constant-current transfer characteristic.

Fig. 57.13

57.15 Common Base Test Circuit

The static characteristics of an NPN transistor connected in common-base configuration can be determined by the use of test circuit shown in Fig. 57.13. Milliammeters are included in series with the emitter and collector circuits to measure I_{E} and I_{C}. Similarly, voltmeters are connected across E and B to measure voltage $V_{B E}$ and across C and B to measure $V_{C B}$. The two potentiometer resistors R_{1} and R_{2} supply variable voltages from the collector and emitter dc supplies respectively.

57.16. Common Base Static Characteristics

(a) Input Characteristic

It shows how I_{E} varies with $V_{B E}$ when voltage $V_{C B}$ is held constant. The method of determining this characteristic is as follows:

First, voltage $V_{C B}$ is adjusted to a suitable value with the help of R_{l} (Fig. 57.13). Next, voltage $V_{B E}$ is increased in a number of discrete steps and corresponding values of I_{E} are noted from the milliammeter connected for the purpose. When plotted, we get the input characteristic shown in Fig.

Fig. 57.14 57.14, one for Ge and the other for Si. Both curves are exactly similar to the forward characteristic of a $P-N$ diode which, in essence, is what the emitter-base junction is.

This characteristic may be used to find the input resistance of the transistor. Its value is given by the reciprocal of its slope.

$$
R_{i n}=\Delta V_{B E} / \Delta I_{E} \quad-V_{C B} \text { constant. }
$$

Since the characteristic is initially nonlinear, $R_{i n}$ will vary with the point of measurement. Its value over linear part of the characteristic is about 50Ω but for low values of $V_{B E}$, it is considerably greater. This change in $R_{i n}$ with change in $V_{B E}$ gives rise to distortion of signals handled by the transistor.

This characteristic is hardly affected by changes either in $V_{C B}$ or temperature.
(b) Output Characteristic

It shows the way I_{C} varies with $V_{C B}$ when I_{E} is held constant. The method of obtaining this characteristic is as follows:

First, movable contact, on R_{2} (Fig. 57.13) is changed to get a suitable value of $V_{B E}$ and hence that of I_{E}. While keeping I_{E} constant at this value, $V_{C B}$ is increased from zero in a number of steps and the corresponding collector current I_{C} that flows is noted.

Next, $V_{C B}$ is reduced back to zero, I_{E} is increased to a value a little higher than before and the whole procedure is repeated. In this way, whole family of curves is obtained, a typical family being shown in Fig. 57.15.

1. The reciprocal of the near horizontal part of the characteristic gives the output resistance $R_{\text {out }}$ of the transistor which it would offer to an input signal. Since the characteristic is linear over most of its length (meaning that I_{C} is virtually independent of $V_{C B}$). $R_{\text {out }}$ is very high, a typical value being $500 \mathrm{k} \Omega$.

$$
R_{\text {out }}=\frac{1}{\Delta I_{C} / \Delta V_{C B}}=\frac{\Delta V_{C B}}{\Delta I_{C}}
$$

2. It is seen that I_{C} flows even when $V_{C B}=0$. For example, it has a value $=1.8 \mathrm{~mA}$ corresponding to $V_{C B}=0$ for $I_{E}=2 \mathrm{~mA}$ as shown in Fig. 57.15. It is due to the fact that electrons are being injected into the base under the action of forward-biased E / B junction and are being collected by the collector due to the action of the internal junction voltage at the C / B junction (Art. 57.2). For reducing I_{C} to zero, it is essential to neutralize this potential barrier by applying a small forward bias ac-ross C / B junction.
3. Another important feature of the characteristic is that a small amount of collector current flows even when emitter current $I_{E}=0$. As we know (Art. 57.12), it is collector leakage current $I_{C B O}$.
4. This characteristic may be used to find $\alpha_{a c}$ of the transistor as shown in Fig. 57.15.

$$
\begin{aligned}
\alpha_{a c} & =\frac{\Delta I_{C}}{\Delta I_{E}}=\frac{D E}{B C} \\
& =\frac{6.2-4.3}{2}=0.95
\end{aligned}
$$

5. Another point worth noting is that although I_{C} is practically independent of $V_{C B}$ over the working range of

Fig. 57.15 the transistor, yet if $V_{C B}$ is permitted to increase beyond a certain value, I_{C} eventually increases rapidly due to avalanche breakdown as shown in Fig. 57.15.
(c) Current Transfer Characteristic

It shows how I_{C} varies with changes in I_{E} when $V_{C B}$ is held constant. For drawing this characteristic, first $V_{C B}$ is set to a convenient value and then I_{E} is increased in steps and corresponding values of I_{C} noted. A typical transfer characteristic is shown in Fig. 57.16 (a). Fig. 57.16 (b) shows a more detailed view of the portion near the origin.

As seen, $\alpha_{a c}$ may be found

(a)

Fig. 57.16

$$
\alpha_{a c}=\Delta I_{C} / \Delta I_{E}
$$

Usually, $\alpha_{a c}$ is found from output characteristic than from this characteristic.
It may be noted in the end that $C B$ connection is rarely employed for audio-frequency circuits because (i) its current gain is less than unity and (ii) its input and output resistances are so different.

57.17. Common Emitter Test Circuit

The static characteristics of an $N P N$ transistor connected in CE configuration may be determined by the use of circuit diagram shown in Fig. 57.17. A milliammeter (or a microammeter in the case of a low-power transistor) is connected in series with the base to measure I_{B}. Similarly, a milliammeter is included in the collector circuit to measure I_{C}. A voltmeter with a typical range of $0-1 \mathrm{~V}$ is connected across base and emitter terminals for measuring $V_{B E}$.

Fig. 57.17
Potentiometer R_{2} connected across dc supply $V_{B B}$ is used to vary I_{B} and $V_{B E}$. A second voltmeter with a typical range of $0-20 \mathrm{~V}$ is connected across collector-emitter terminals to measure the output collector-emitter voltage $V_{C E}$.

57.18. Common Emitter Static Characteristics

(a) Input Characteristic

It shows how I_{B} varies with changes in $V_{B E}$ when $V_{C E}$ is held constant at a particular value.
To begin with, voltage $V_{C E}$ is maintained constant at a convenient value and then $V_{B E}$ is increased in steps. Corresponding values of I_{B} are noted at each step. The procedure is then repeated for a different but constant value of $V_{C E}$. A typical input characteristic is shown in Fig. 57.18. Like $C B$ connection, the overall shape resembles the forward characteristic of a $P-N$ diode. The reciprocal of the slope gives the input resistance $R_{i n}$ of the transistor.

$$
R_{i n}=\frac{1}{\Delta I_{B} / \Delta V_{B E}}=\frac{\Delta V_{B E}}{\Delta I_{B}}
$$

Due to initial non-linearity of the curve, $R_{i n}$ varies considerably from a value of $4 \mathrm{k} \Omega$ near the origin to a value of 600Ω over the more linear part of the curve.
(b) Output or Collector Characteristic

It indicates the way in which I_{C} varies with changes in $V_{C E}$ when I_{B} is held constant.

For obtaining this characteristic, first I_{B} is set to a convenient value and maintained constant and then $V_{C E}$ is increased from zero in steps, I_{C} being noted at each step. Next, $V_{C E}$ is reduced to zero and I_{B} increased to another convenient value and the whole procedure repeated. In this way, a family of curves (Fig. 57.19) is obtained.

Fig. 57.18

It is seen that as $V_{C E}$ increases from zero, I_{C} rapidly increases to a near saturation level for a fixed value of I_{B}. As shown, a small amount of collector current flows even when $I_{B}=0$. It is called $I_{C E O}$ (Art. 57.12). Since main collector current is zero, the transistor is said to be cut-off.

It may be noted that if $V_{C E}$ is allowed to increase too far, C / B junction completely breaks down and due to this avalanche breakdown, I_{C} increases rapidly and may cause damage to the transistor.

When $V_{C E}$ has very low value (ideally zero), the transistor is said to be saturated and it operates in the saturation region of the characteristic. Here, change in I_{B} does not produce a corresponding change in I_{C}.

This characteristic can be used to find $\beta_{a c}$ at a specific value of I_{B} and $V_{C E}$. It is given by $\beta_{a c}$ $=\Delta I_{C} / \Delta I_{B}$.

2200 Electrical Technology

Fig. 57.19

We may select any two points A and B on the $I_{B}=60 \mu \mathrm{~A}$ and $40 \mu \mathrm{~A}$ lines respectively and measure corresponding values of I_{C} from the diagram for finding ΔI_{C}. Since ΔI_{B} $=(60-40)=20 \mu \mathrm{~A}, \beta_{a c}$ can be easily found.

The value of output resistance $R_{\text {out }}\left(=\Delta V_{C E} / \Delta I_{C}\right)$ over the near horizontal part of the characteristic varies from $10 \mathrm{k} \Omega$ to $50 \mathrm{k} \Omega$.
(c) Current Transfer Characteristic

It indicates how I_{C} varies with changes in I_{B} when $V_{C E}$ is held constant at a given value.

Such a typical characteristic is shown in Fig. 57.20 (a). Its slope gives

$$
\beta_{a c}=\Delta I_{C} / \Delta I_{B}
$$

From Fig. 57.20 (b), it is seen that a small collector current flows even when $I_{B}=0$. It is the com-mon-emitter leakage current $I_{C E O}$ $=(1+\beta) I_{C O}$. Like $I_{C O}$, it is also due to the flow of minority carriers across the reverse-biased C / B junction.

57.19. Common Collector Static Characteristics

Fig. 57.20
As shown in Fig. 57.21, in this case, collector terminal is common carrier to both the input ($C B$) and output ($C E$) carriers circuits.

The output characteristic is I_{E} versus $V_{C E}$ for several fixed values of I_{B}. Since $I_{C} \cong I_{E}$, this characteristic is practically idential to that of the $C E$ circuit and is shown in Fig. 57.22 (a).

Fig. 57.21

Similarly, its current gain characteristic I_{C} versus I_{B} for different values of $V_{C E}$ is similar to that of a $C E$ circuit because $I_{C} \cong I_{E}$.

The $C C$ input characteristic is a plot of $V_{C B}$ versus I_{B} for different values of $V_{C E}$ and is shown in figure 57.22 (b). It is quite different from those for $C B$ or $C E$ circuit. This difference is due to the fact that input voltage $V_{C B}$ is largely determined by the value of $C E$ voltage. Consider the input characteristic for $I_{B}=100 \mu \mathrm{~A}$ and $V_{C E}=2 \mathrm{~V}$.
$V_{C B}=V_{C E}-V_{B E}=2-0.7=1.3 \mathrm{~V}$ — for Si material
Moreover, as $V_{C B}$ is increased, $V_{B E}$ is reduced thereby reducing I_{B}.
Now, consider the values $V_{C E}=4 \mathrm{~V}$ and $I_{B}=100 \mu \mathrm{~A}$

$$
V_{C B}=4-0.7=3.3 \mathrm{~V}
$$

Again, as $V_{C B}$ increases, I_{B} is decreased.

(a)

(b)

Fig. 57.22

57.20. Different Ways of Drawing Transistor Circuits

In Fig. $57.23(a)$ is shown a $C B$ transistor circuit which derives its voltage and current requirements from two independent power sources i.e. two different batteries. Correct battery connections can be done by remembering the transistor polarity rule (Art. 57.2) that in an NPN transistor, both collector and base have to be Posi-

Fig. 57.23 tive with respect to the emitter. Of course, collector is a little bit more positive than base which means that between themselves, collector is at a slightly higher positive potential with the respect to the base. Conversely, base is at a little lower potential with respect to the collector.

Putting it in a slightly different way, we can say that collector is positive w.r.t. base and conversely, base is negative w.r.t. collector. That is why, potential difference between collector and base in written as $V_{C B}$ (and not $V_{B C}$) because terminal at higher potential is mentioned first. Same reasoning applies to $V_{B E}$. Fig. 57.23 (b) shows another and more popular way of indicating power supply voltage. Only one terminal of the battery is shown, the other terminal is understood to be grounded so as to provide a complete path for the current.

For example, negative terminal of $V_{C C}$ and positive terminal of $V_{E E}$ are supposed to be grounded (as is the base) even though not shown as such in the diagram.

Fig. 57.24 (a) shows an $N P N$ transistor connected in $C E$ configuration with volt-

Fig. 57.24
ages and currents drawn from two independent power sources. As seen, battery con-nections and voltage markings are as per the rule given in Art. 57.2. Fig. 57.24 (b) shows the more popular way of indicating power supply voltages.

As seen, both collector and base are positive with respect to the common electrode i.e. emitter. Hence, a single battery can be used to get proper voltages across the two as shown in Fig. 57.25.

Fig. 57.25

(a)

(b)

Fig. 57.26
Fig. 57.26 (a) shows the $C C$ configuration of an NPN transistor and Fig. 57.26 (b) shows the same circuit drawn differently.

57.21. Common Base Formulas

Let us find the values of different voltages and currents for the circuit in Fig. 57.23 (b). Consider the circuit $M E B M$. Applying Kirchhoff's voltage law and starting from point B (or ground) upwards, we get
(a) $-V_{B E}-I_{E} R_{E}+V_{E E}^{*}=0$ or

$$
I_{E}=\frac{V_{E E}-V_{B E}}{R_{E}}
$$

where $\quad V_{B E}=0.3 \mathrm{~V}$ (for Ge) and 0.7 V (for Si)
Since, generally, $V_{E E}$ » $V_{B E}$, we can simplify the above to $I_{E} \cong V_{E E} / R_{E}=10 \mathrm{~V} / 20 \mathrm{~K}=0.5 \mathrm{~mA}$ (Fig. 57.23).

Taking $V_{B E}$ into account and assuming silicon transistor

$$
I_{E}=(10-0.7) \mathrm{V} / 20 \mathrm{~K}=0.465 \mathrm{~mA}
$$

(b) $I_{C}=\alpha I_{E} \cong \mathrm{I}_{\mathrm{E}}=0.5 \mathrm{~mA}$ neglecting leakage current.
(c) From circuit $N C B N$, we get

$$
V_{C B}=V_{C C}-I_{C} \cong V_{C C}-I_{E} R_{L}=25-0.5 \times 10=20 \mathrm{~V} \quad\left(\therefore I_{C} \cong I_{E}\right)
$$

Example 57.8. In the circuit of Fig. 57.27 (a), what value of R_{L} causes $V_{C B}=5 \mathrm{~V}$?
Solution. $I_{E} \cong V_{E E} / R_{E}=10 \mathrm{~V} / 10 \mathrm{~K}=1 \mathrm{~mA}$

$$
I_{C}=\alpha I_{E} \cong I_{E}=1 \mathrm{~mA}
$$

Now, $\quad V_{C C}=I_{C R L}+V_{C B}$
$\therefore \quad R_{L}=\frac{V_{C C}-V_{C B}}{I_{C}} \quad=\frac{20-5}{1 \mathrm{~mA}}=15 \mathrm{~K}$
Example. 57.9. For the circuit shown in Fig. 57.27 (b), find the value of R_{E} which causes $\frac{V_{B C}}{*}=10 \frac{\mathrm{~V} .}{\text { It }} \frac{\mathrm{is} \text { taken }}{}$

It is taken positive because we are going from the negative to the positive terminal of the emitter battery.

Fig. 57.27

57.22. Common Emitter Formulas

Consider the $C E$ circuit of Fig. 57.28. Taking the emitter-base circuit, we have

$$
\begin{aligned}
I_{B} & =\frac{V_{B B}-V_{B E}}{R_{B}} \cong \frac{V_{B B}}{R_{B}} \\
I_{C} & =\beta I_{B} \quad \text { - neglecting leakage current } I_{C E O} \\
V_{C E} & =V_{C C}-I_{C} R_{L}
\end{aligned}
$$

Example 57.10. For the circuit of Fig. 57.28, find (i) $I_{B}\left(\right.$ ii) $I_{C}\left(\right.$ iii) I_{E} and (iv) $V_{C E}$ Neglect $V_{B E}$.

Sol. (i) $\quad I_{B} \cong \frac{V_{B B}}{R_{B}}=\frac{10}{1 M}=10 \mu \mathrm{~A}$
(ii) $I_{C}=\beta I_{B}=100 \times 10 \mu \mathrm{~A}=1 \mathrm{~mA}$
(iii) $I_{E}=I_{B}+I_{C}=1 \mathrm{~mA}+10 \mu \mathrm{~A}=1.01 \mathrm{~mA}$
(iv) $V_{C E}=V_{C C}-I_{C R C}=15-1 \times 10=5 \mathbf{V}$

Example 57.11. Find the exact value of emitter current I_{E} in the

Fig. 57.28 two-supply emitter bias circuit of Fig. 57.29.
(Electronics-1, Bangalore Univ. 1989)
Solution. Let us apply Kirchhoff 's voltage law to the loop containing R_{B}, R_{E} and $V_{E E}$. Starting from emitter and going clock-wise, we get

$$
\begin{array}{clrr}
& -I_{E} R_{E}+V_{E E}-I_{B} R_{B}-V_{B E}=0 \\
& & \tag{i}\\
\text { or } & I_{E} R_{E}+I_{B} R_{B}=V_{E E}-V_{B E} & & \ldots \text { (i) } \\
\text { Now } & \beta=I_{C} / I_{B} \cong I_{E} / I_{B} & \therefore & I_{B} \cong I_{E} / \beta
\end{array}
$$

Substituting this value in Eq. (i) above, we get

$$
\begin{aligned}
I_{E} R_{E}+\frac{I_{E} R_{B}}{\beta} & =V_{E E}-V_{B E} \\
I_{E} & =\frac{V_{E E}-V_{B E}}{R_{E}+R_{B} / \beta}
\end{aligned}
$$

Since, in most cases, $\left(R_{B} / \beta\right) \ll R_{E}$
$\therefore \quad I_{E}=\left(V_{E E}-V_{B E}\right) / R_{E} \cong V_{E E} / R_{E}$

Fig. 57.29

Also, $I_{B}=I_{E} /(1+\beta) \cong I_{E} / \beta$
Example. 57.12. In the circuit of Fig. 57.30, find (i) I_{E}, (ii) I_{B}, (iii) I_{C} and (iv) $V_{C E}$. Neglect $V_{B E}$ and take $\beta=100$.

Sol. (i) $I_{E}=\frac{V_{E E}}{R_{E}+R_{B} / \beta}=\frac{30}{30+20 / 100} \cong 1 \mathrm{~mA}$
(ii) $I_{B} \cong I_{E} / \beta=1 / 100$
$=0.01 \mathrm{~mA}$
(iii) $I_{C}=I_{E}-I_{B}=1-0.01$
$=0.99 \mathrm{~mA}$
(iv) $V_{C E}=V_{C C}-I_{C} R_{L}=30-10 \times 0.99=\mathbf{2 0 . 1} \mathrm{V}$.

Fig. 57.30
Fig. 57.31

57.23. Common Collector Formulas

The $C C$ circuit with its proper d.c. biasing voltage sources is shown in Fig. 57.31 (a). The two circuits given in Fig. 57.31 represent the same thing.

Fig. 57.32

Another way of drawing the same circuit is shown in Fig. 57.32 (a) where only one battery has been used. It should be noted that load resistor is not in the collector lead but in the emitter lead as shown.

Fig. 57.32 (b) makes the circuit connection quite clear. Input is between base and collector terminals whereas output is between emitter and collector terminals.

It is seen that

$$
I_{E}=\frac{V_{C C}-V_{B E}}{R_{E}+R_{B} / \beta} ; \quad V_{C C}=V_{C E}+I_{E} R_{E} ; \quad I_{E}=\frac{V_{C C}-V_{B E}}{R_{E}+\beta R_{E}} ; I_{C}=\beta I_{B}
$$

Example 57.13. In the CC circuit of Fig. 57.33, find (a) I_{B}, (b) I_{E}, (c) $V_{C E},(d) V_{E}$ and (e) V_{B}.

Take $\beta=49$ and $V_{B E}=0.7 \mathrm{~V}$.

Solution

$$
\text { (a) } \begin{aligned}
I_{B} & =\frac{V_{C C}-V_{B E}}{R_{B}+(1+\beta) R_{E}} \\
& =\frac{9.0-0.7}{100+50 \times 2}=41.5 \mu \mathrm{~A}
\end{aligned}
$$

(b) $I_{E}=(1+\beta) I_{B}=50 \times 41.5=2.075 \mathrm{~mA}$
(c) $V_{C E}=V_{C C}-I_{E} R_{E}=9-2.075 \times 2=5.85 \mathrm{~V}$
(d) $V_{E}=I_{E} R_{E} \quad=2.075 \times 2=4.15 \mathrm{~V}$
(e) $V_{B}=V_{B E}+I_{E} R_{E}=0.7+4.15=4.85 \mathrm{~V}$

Fig. 57.33

57.24. The Beta Rule

According to this rule, resistance from one part of a transistor circuit can be referred to another of its parts (as we do with the primary and secondary winding impedances of a transformer). For example, resistance R_{L} in the collector circuit can be referred to the base circuit and vice versa. Similarly, R_{E} can be referred to the base circuit and, reciprocally, R_{B} can be referred to the emitter circuit. Since current through R_{L} is $I_{C}\left(=\beta I_{B}\right)$, hence β-factor comes into the picture. Similarly, current through R_{E} is I_{E} which is $(1+\beta)$ times I_{B}, hence $(1+\beta)$ or approximately β-factor comes into the picture again, Use of this ' β-rule' makes transistor circuit calculations quite quick and easy. It makes the calculation of I_{B} quite simple.

The ' β-rule' may be stated as under :

1. When referring R_{L} or R_{C} to the base circuit, multiply it by β. When referring R_{B} to the collector circuit, divide it by β.
2. When referring R_{E} to base circuit, multiply it by $(1+\beta)$ or just β (as a close approximation).
3. Similarly, when referring R_{B} to emitter circuit, divide it by $(1+\beta)$ or β.

Before you apply this rule to any circuit, you must remember one very important point otherwise you are likely to get wrong answers. The point is that only those resistances are transferred which lie in the path of the current being calculated. Not otherwise. The utility of this rule will be demonstrated by solving the following problems.

Example 57.14. Calculate the value of $V_{C E}$ in the collector stabilisation circuit of Fig. 57.34.
Solution. We will use β-rule to find I_{C} in the following two ways.
(i) First Method

Here, we will transfer R_{L} to the base circuit.

$$
\begin{gathered}
I_{B}=\frac{V_{C C}}{R_{B}+\beta R_{L}}=\frac{20}{1000+100(10)}=10 \mathrm{~mA} \\
I_{C}=\beta I_{B}=100 \times 10=1000 \mathrm{~mA}=1 \mathrm{~A} \\
V_{C E} \cong V_{C C}-I_{C} R_{L}=20-1 \times 10=\mathbf{1 0} \mathrm{V}
\end{gathered}
$$

(ii) Second Method

Now, we will refer R_{B} to collector circuit.

$$
\begin{aligned}
& I_{C} \cong \frac{V_{C C}}{R_{L}+R_{B} / \beta}=\frac{20}{10+1000 / 100)}=1 \mathrm{~mA} \\
& V_{C E}=V_{C C}-I_{C} R_{L}=10 \mathrm{~V}
\end{aligned}
$$

Fig. 57.34

It was a simple circuit because $R_{E}=0$ and R_{B} was connected to
$V_{C C}$ through R_{L} and not directly (in which case, R_{L} would not lie in the path of I_{B}). Now, we will consider the case when R_{E} is present and R_{L} does not lie in the path of I_{B}.

Example 57.15. Calculate the three transistor currents in the circuit of Fig. 57.35.

Solution. (i) First Method

Fig. 57.35

Since R_{E} lies in the path of I_{B}

$$
\begin{aligned}
\therefore \quad I_{B} & =\frac{V_{C C}}{R_{L}+\beta R_{E}} \\
& =\frac{10}{100+200(0.5)}=\mathbf{0 . 0 5} \mathbf{~ m A} \\
I_{C} & =\beta I_{B}=200 \times 0.05=\mathbf{1 0} \mathbf{m A}, I_{E}=I_{B}+I_{C}=\mathbf{1 0 . 0 5} \mathbf{~ m A}
\end{aligned}
$$

(ii) Second Method

Now, we will transfer R_{B} to emitter circuit and find I_{E} directly.
$I_{E}=\frac{V_{C C}}{R_{E}+R_{B} / \beta}=\frac{10}{0.5+100 / 200}=10 \mathrm{~mA} \quad$ - as before
$I_{B}=I_{C} / \beta \cong 10 / 200=0.05 \mathrm{~mA}$

Example 57.16. Calculate I_{E} in the circuit of Fig. 57.36.
(Electronic \& Commu., Ranchi Univ. 1990)
Solution. If we neglect $V_{B E}$, then as seen from the circuit of Fig. 57.36.

$$
I_{E}=\frac{V_{E E}}{R_{E}+R_{B} / \beta}=\frac{10}{10+10 / 100}=0.99 \mathrm{~mA}
$$

57.25. Importance of $V_{C E}$

The voltage $V_{C E}$ is very important in checking whether the transistor is
(a) defective,
(b) working in cut-off,
(c) in saturation or well into saturation (Example 57.17 and 57.18)

When $V_{C E}=V_{C C}$, the transistor is in cut-off i.e. it is turned OFF. When $V_{C E}=0$, the transistor is in saturation i.e. it is turned fully ON. When $V_{C E}$ is less than zero i.e. negative, the transistor is said to be well

Fig. 57.36 into saturation. In practice, both these conditions are avoided. For am-
$\frac{1}{2} \mathrm{ON}$. In this way, variaplifier operation, $V_{C E}=\frac{1}{2} V_{C C}$ i.e. transistor is operated at approximately $\frac{1}{2} \mathrm{ON}$. In this way, varia-
tions in I_{B} in either direction will control I_{C} in both directions. In other

Fig. 57.37 words, when I_{B} increases or decreases, I_{C} also increases or decreases. However, if I_{B} is OFF, I_{C} is also OFF. On the other hand, if collector has been turned fully ON, maximum I_{C} flows. Hence, no further increase in I_{B} can be reflected in I_{C}.

Example 57.17. For the CE circuit of Fig. 57.37, find the value of $V_{C E}$ Take $\beta=100$ and neglect $V_{B E}$ Is the transistor working in cut-off or saturation?

$$
\begin{array}{ll}
\text { Solution. } & I_{B}=10 / 100 \\
& =0.1 \mathrm{~A} \\
I_{C}=\beta I_{B} & =100 \times 0.1=10 \mathrm{~A} \\
& V_{C E}=V_{C C}-I_{C} R_{L}=10-10 \times 1=0
\end{array}
$$

Obviously, the transistor is operating just at saturation and not well into saturation.
Example 57.18. Find out whether the transistor of Fig. 57.38 is working in saturation or well into saturation. Neglect $V_{B E}$.
(Basic Electronics, Bombay Univ.)
Solution. $\quad I_{B}=10 / 10=1 \mathrm{~A}$

$$
I_{C}=100 \times 1=100 \mathrm{~A}
$$

Obviously, I_{C} cannot be that large because its maximum value is given by $V_{C C} / R_{L}=10 / 1=10 \mathrm{~A}$. However, let us assume that I_{C} takes this value temporarily. Then,

$$
\begin{aligned}
V_{C E} & =V_{C C}-I_{C} R_{L} \\
& =10-100 \times 1=-90 \mathrm{~V}
\end{aligned}
$$

It means that the transistor is working well into saturation.

57.26. Cut-Off And Saturation Points

Consider the circuit of Fig. 57.39 (a). As seen from Art 57.22,

$$
V_{C E}=V_{C C}-I_{C} R_{L}
$$

Since, $I_{B} \quad=0, \quad \therefore \quad I_{C}=0$.
Hence, $V_{C E}=V_{C C}$

Fig. 57.38

Under these conditions, the transistor is said to be cut-off for the

Fig. 57.39
condition,
(i) whole of $V_{C C}$ drops across R_{L}.
(ii) collector current has maximum possible value called I_{C} (sat).

Normal operation of a transistor lies between the above two extreme conditions of cut-off and saturation.

Example. 57.19. In a simple amplifier circuit (Fig. 57.40) with base resistance, $R_{B}=50 \mathrm{~K}$, $R_{E}=2 K, R_{C}=3 K, V_{C C}=10 \mathrm{~V}, h_{F E}=100$, determine whether or not the silicon transistor is in the saturation and find I_{B} and I_{C}. Explain the saturation region in common-emitter characteristics. (Electronics, MS. Univ. Baroda,)
Solution. Whether the transistor is in saturation or not will depend on the value of $V_{C E}$.

$$
\begin{gathered}
\qquad \begin{array}{c}
I_{E}=\frac{V_{B B}-V_{B E}}{R_{E}+R_{B} / \beta} \cong \frac{V_{B B}}{R_{E}+R_{B} / \beta} \\
=\frac{5}{2+50 / 100}=2 \mathrm{~mA} \\
I_{C} \cong I_{E}=2 \mathrm{~mA} ; I_{B}=I_{C} / \beta=2 / 100 \\
=0.02 \mathrm{~mA}
\end{array} \\
\text { Now, } V_{C C}=I_{C} R_{C}+V_{C E}+I_{E} R_{E} \\
\text { or } \quad V_{C E}=10-(2 \times 3)(2 \times 2)=0
\end{gathered}
$$

Obviously, the transistor has entered

Fig. 57.40 saturation. reason that it does not conduct any current. This value of $V_{C E}$ is written as $V_{C E \text { (cut-off) }}$. Incidentally, a transistor when cut-off acts like an open switch.

If, in Fig. $57.39(b)$, values of R_{B} and R_{L} are such that $V_{C E}$ comes out to be zero, then transistor is said to be saturated. Putting $V_{C E}=0$ in the above equation, we get
$0=V_{C C}-I_{C} R_{L}$ or $\quad I_{C}=V_{C C} / R_{L}$

It should be noted that a transistor, when saturated, acts as a closed switch of negligible resistance.

It is obvious that under saturation
tion.

57.27. BJT Operating Regions

A BJT has two junctions i.e. base-emitter and base-collector junctions either of which could be forward-biased or reverse-biased. With two junctions, there are four possible combinations of bias condition.
(i) both junctions reverse-biased,
(ii) both junctions forward-biased,
(iii) $B E$ junction forward-biased, $B C$ junction reverse-biased.
(iv) $B E$ junction reverse-biased, $B C$ junction forward-biased.

Since condition (iv) is generally not used, we will tabulate the remaining three conditions below.

Table No. 57.1: Transistor Operation Regions

BE Jn	BC Jn	Region
RB^{*}	RB	cut-off
$\mathrm{FB}^{* *}$	FB	saturation
FB	RB	active

* Reverse-biased, ** Forward-biased
(a) Cut-off

This condition corresponds to reverse-bias for both base-emitter and basecollector junctions. In fact, both diodes act like open circuits under these conditions as shown in Fig. 57.41, which is true for an ideal transistor. The revese leakage current (Art 57.12) has been neglected. As seen, the three transistor terminals are uncoupled from each other. In cut-off, $V_{C E}=V_{C C}$.

Fig. 57.42
(b) Saturation

This condition corresponds to forward-bias for both base-emitter and base-collector junctions. The transistor becomes saturated i.e. there is perfect short-circuit for both

Fig. 57.41 base-emitter and base-collector diodes. The ideal case is shown in Fig. 57.42, where the three transistor terminals have been connected together thereby acquiring equal potentials. In this case, $V_{C E}=0$.
(c) Active Region

This condition corresponds to forward-bias for base-emitter junction and reverse bias for base-collector junction. In this, $V_{C E}>0$.

57.28. Active Region DC Model of a BJT

Such a model is used for predicting transistor operation in the active region. This condition is shown in Fig. 57.43 both for a $P N P$ and an NPN transistor. A base-emitter junction voltage of 0.7 V has been assumed for silicon transistor. The $B E$ junction is represented by a constant voltage source since it is forward-biased. As seen, in an NPN transistor, base is 0.7 V higher than the emitter terminal. However, in a PNP transistor, base is 0.7 V lower than the emitter terminal.

To account for the effect of base con-

Fig. 57.43 trol, a current source of βI_{B} is placed between collector and base terminals. It is called a dependent or controlled source because it is a function of a variable in another circuit. It may be noted that $I_{E}=\left(I_{B}+I_{C}\right)$ in both cases.

57.29. BJT Switches

Very often, bipolar junction transistors are used as electronic switches. With the help of such a switch, a given load can be turned ON or OFF by a small control signal. This control signal might be the one appearing at the output of a digital logic or a microprocessor. The power level of the control signal is usually very small and, hence, it is incapable of switching the load directly. However, such a control signal is certainly capable of providing enough base drive to switch a transistor ON or OFF and, hence, the transistor is made to switch the load.

When using BJT as a switch, usually two levels of control signal are employed. With one level, the transistor operates in the cut-off region (open) whereas with the other level, it operates in the saturation region and acts as a shortcircuit. Fig. $57.44(b)$ shows the condition when control signal $v_{i}=0$. In this case, the $B E$ junction is reverse-biased and the transistor is open and, hence acts as an open switch. However, as shown in Fig. 57.44 (c) if v_{i} equals a positive voltage of sufficient magnitude to produce saturation i.e. if $v_{i}=v_{i}$ the transistor acts as a closed switch.

Fig. 57.44

Fig. 57.45 shows a form of series switching circuit utilizing an $N P N$ transistor with a negative dc supply and a control signal voltage having levels of zero and $-v_{i}$.

Example 57.20. The circuit of Fig. 57.46 is designed to produce nearly constant current through the variable collector load resistance. An ideal 6 V source is used to establish the current. Determine (a) value of I_{C} and $V_{E},(b)$ range of R_{C} over which the circuit will function properly. Assume silicon transistor and $a b$ large enough to justify the assumptions used.

Fig. 57.45
(Applied Electronics-II, Punjab Univ. 1993)
Solution. (a) $I_{C} \cong I_{E}=(6-0.7) / 530=10 \mathrm{~mA}$

$$
V_{E}=6-530 \times(10 \times 10)=5.3 \mathrm{~V} .
$$

This voltage will remain constant so long as transistor operation is confined to active region.
(b) When $\mathbf{R}_{\mathrm{C}}=0$

$$
V_{C E}=12-5.3=6.7 \mathrm{~V}
$$

It is certainly well within the active region. As R_{C} increases, its drop increases and hence, $V_{C E}$ decreases. There will be some value of R_{C} at which active region operation ceases.

Now, $\quad V_{C E}=12-5.3-I_{C} R_{C}=6.7-I_{C} R_{C}$
Value of $R_{C(\max)}$ can be found by puting $V_{C E}=0$

Fig. 57.46
$\therefore \quad 0=6.7-I_{C} R_{C(\max)}$
or $R_{C(\max)}=6.7 / I_{C}=6.7 / 0.01=670 \Omega$
Hence, circuit will function as a constant current source so long as R_{C} is in the range $0<R_{C}<$ 670Ω. When R_{C} exceeds 670Ω, the $B J T$ becomes saturated.

57.30. Normal DC Voltage Transistor Indic ations

For a transistor to operate as an amplifier, it is desirable that $V_{C E}=\frac{1}{2} V_{C C}$. However, in actual practice, wide tolerances are allowed. Generally, $V_{C E}$ varies between 25% to 75% of $V_{C C}$. Any transistor amplifier with $V_{C E}=V_{C C}$ is either open or is operating in cut-off. When operating with $V_{C E}$ near cut-off, the amplifier causes lot of distortion. Same is the case when $V_{C E}$ is nearly zero. Hence, any transistor amplifier with $V_{C E}$ more than $75 \% V_{C C}$ or less than 25% $V_{C C}$ should be suspected of having a problem and further investigated.

In the circuit shown in Fig. 57.47 (a),

Fig. 57.47
$V_{C E}$ should be in the range $25-75 \%$ of $V_{C C}$. In the circuit of Fig. 57.47 (b), $V_{C E}$ may be normal but either R_{L} or R_{E} could be shorted. Hence, V_{C} and V_{E} should be measured seperately. Moreover, $V_{C E}$ could be found by subtracting V_{E} from V_{C}.

For the circuit of Fig. 57.47 (b), the normal voltmeter readings are

$$
V_{C E}=\frac{1}{2} V_{C C} ; \quad V_{E}=\frac{1}{4} V_{C C} ; \quad V_{E}=\frac{3}{4} V_{C C}
$$

If instead of R_{L}, there is a low-resistance coil in the circuit, then

$$
V_{C E}=\frac{1}{2} V_{C C} ; \quad V_{E}=\frac{1}{2} V_{C C} ; \quad V_{C}=V_{C C}
$$

57.31. Tra nsistor Fault Location

Voltage measurements are employed in the vast majority of trouble situations because current measurements are comparatively difficult to make. Magnitude of $V_{C E}$ is of great diagnostic value in finding and locating faults in a transistor circuit. Following possibilities are considered :
(a) $V_{C E}=0$

Possibilities are that the transistor is

1. shorted out, 2. operating in saturation, 3. disconnected from $V_{C C}$
(b) $V_{C E}=\frac{1}{2} V_{C C}$

It shows that the circuit is operating normally and is well-designed.
(c) $V_{C E}=V_{C C}$

Possibilities are that the transistor is

1. open-circuited,
2. operating in out-off
3. having all resistors in series with $V_{C E}$ shorted.

Example 57.21. Compute the value of $V_{C E}$ for the CE circuit shown in Fig. 57.48.

Solution. Since the collector is disconnected from the supply due to 'open' in the

Fig. 57.48

Fig. 57.49
circuit, $V_{C E}=0$. It represents fault condition No. (a) 3 in Art. 57.31.
Example. 57.22. What is the value of $V_{C E}$ in the CE circuit of Fig. 57.49.
Solution. Since R_{B} is shorted out, I_{B}, would increase and probably burn out the E / B junction. But this burn out is not indicated in the question. Hence, with high base current, the transistor is operating in saturation so that $V_{C E}=0$.

Example 57.23. What is the value of $V_{C E}$ in the circuit of Fig. 57.50.
Solution. Since R_{L} is the only resistor in series with the transistor and is shorted out, it means that there is no voltage drop anywhere. Hence, $V_{C E}=V_{C C}$. It represents fault No. (c) 3 stated in Art. 7.31 above.

Example 57.24. Find the possible value of $V_{C E}$, V_{C} and V_{E} for the circuit shown in Fig. 57.51.

Solution. In the circuit of Fig. 57.51, there is neither a short nor an open and the voltage polarities are correct for an NPN transistor. It looks like a well-designed circuit operating normally. Hence, according to Art. 57.30.

$$
\begin{aligned}
& V_{C E}=\frac{1}{2} V_{C C}=\mathbf{1 0} \mathbf{V} ; V_{E}=\frac{1}{4} V_{C C}=\mathbf{5} \mathbf{V} \\
& V_{C}=\frac{3}{4} V_{C C}=\mathbf{1 5} \mathbf{V}
\end{aligned}
$$

Fig. 57.50

Example 57.25. Find the values of V_{C}, V_{E} and $V_{C E}$ in the circuit of Fig. 57.52.
Solution. Since $I_{B}=0$, transistor is cut off.
Hence, $V_{E}=\mathbf{0}$
Also $\quad V_{C}=-20 \mathrm{~V}$
and $\quad V_{C E}=-20 \mathrm{~V}$
Example 57.26. What would be the values of V_{C}, V_{E} and $V_{C E}$ for the circuit shown in Fig. 57.53.

Solution. Since emitter is open, no current flows in any part of the circuit. The transistor is essentially cut off. Without IR drops, all points above the emitter are at 30 V .

$$
\begin{array}{ll}
\therefore \quad & V_{E}=\mathbf{3 0} \mathbf{V} \\
& V_{C}=\mathbf{3 0} \mathbf{V} \text { and } \\
& V_{C E}=\mathbf{0} \mathbf{V}
\end{array}
$$

Fig. 57.52

57.32. Solving Universal

Stabilization Circuit

Such a circuit is shown in Fig. 57.54 in which \boldsymbol{R}_{E} appears to be in parallel with R_{2}. But according to the β-rule (Art 57.24), R_{2} is actually in parallel with βR_{E}. In a well-designed circuit, the resistance βR_{E} is much larger than R_{2}. Hence, their combined resistance $=R_{2} \| \beta R_{E} \cong R_{2}$. On this assumption as well as another that I_{B} is practically zero, we can find voltage drop across R_{2} by the Proportional Voltage Formula. Since $V_{C C}$ is applied across $R_{1}-R_{2}$ potential divider circuit, drop $\operatorname{across} R_{2}$.

$$
=V_{C C} \cdot R_{2} /\left(R_{1}+R_{2}\right)
$$

If we neglect $V_{B E}$, then this drop equals V_{E}.

$$
\begin{array}{ll}
\therefore & V_{E} \cong V_{C C} \frac{R_{2}}{R_{1}+R_{2}} \\
& I_{E} \cong \frac{V_{E}}{R_{E}}
\end{array}
$$

and
Having found I_{E}, other currents and voltage drops can be easily found.

$$
\begin{aligned}
& V_{E E}=V_{C C}-I_{C} R_{L}-I_{E} R_{E} \\
& \text { Since, } I_{E} \\
& \cong I_{C} \\
& \therefore V_{C E}
\end{aligned}=V_{C C}-I_{E} R_{L}-I_{E} R_{E}=
$$

$$
V_{C C}-I_{E}\left(R_{L}^{C E}+R_{E}\right)
$$

Fig. 57.54

Fig. 57.55

Example 57.27. Find $V_{C E}$ and V_{E} for the circuit shown in Fig. 57.55. Neglect $V_{B E}$.
Solution. As explained above

$$
\begin{aligned}
& V_{E}=V_{2}=V_{C C} \frac{R_{E}}{R_{1}+R_{2}}=15 \times \frac{5}{15}=5 \mathrm{~V} \\
& I_{E}=V_{E} / R_{E}=5 \mathrm{~V} / 10 \mathrm{~K}=0.5 \mathrm{~mA} \\
& I_{C} \cong I_{E}=0.5 \mathrm{~mA}, V_{C E}=V_{C C}-I_{E}\left(R_{L}+R_{E}\right)=15-0.5 \times 15=7.5 \mathrm{~V}
\end{aligned}
$$

57.33. Notation forVoltages and Currents

In order to avoid confusion while dealing with dc and ac voltages and currents, following notation will be employed :

1. For d.c. or non-time-varying quantities

We will use capital letters with capital subscripts such as
$I_{E}, I_{B}, I_{C} \quad-\quad$ for $d c$ currents
$V_{E}, V_{B}, V_{C} \quad$ - for $d c$ voltages to ground
$V_{B E}, V_{C B}, V_{C E} \quad-\quad$ for $d c$ potential differences
$V_{E E}, V_{C C}, \mathrm{~V}_{\mathrm{BB}} \quad$ - for $d c$ source or supply voltages
2. For ac quantities

We will use the following symbols :
$i_{e}, i_{b}, i_{c} \quad-\quad$ for instantaneous values of ac currents
$I_{e}, I_{b}, I_{c} \quad-\quad$ for r.m.s values of a.c. currents
$v_{e}, v_{b}, v_{c} \quad-\quad$ for instantaneous values of a.c. voltages to ground $v_{b e}, v_{e b}, v_{c e} \quad-\quad$ for a.c. voltage differences
3. Total ac and dc voltages and currents

In this case, we will use a hybrid notation. For example, i_{E} will be used to represent the total emitter current, i.e. sum of dc and ac currents in the emitter.

Fig. 57.56 illustrates the notation discussed above.

57.34. Increase/Decrease Notation

This notation is very helpful in analysing transistor operation when ac signal is applied to it. It is simply this:
\uparrow means increases and \downarrow means decrease.

Fig. 57.56

As an illustration, consider the transistor circuit of Fig. 57.57. If $V_{B B}$ were increased (\uparrow), I_{B} would increase (\uparrow). This would increase $I_{C}(\uparrow)$ because it equals βI_{B}. The drop $I_{C} R_{L}$ would increase (\downarrow) and, hence, $V_{C E}$ will decrease (\downarrow) because $V_{C E}=\mathrm{V}_{\mathrm{C}^{-}}$ $I_{C} R_{L}$.

Using increase/decrease notation, the above sequence of changes can be written as

$$
V_{B B} \uparrow, I_{B} \uparrow, I_{C} \uparrow, I_{C} R_{L} \uparrow V_{C E} \downarrow
$$

At one look, we can straight away say that as input voltage is increased, output voltage is decreased.

57.35. Applying AC to a DC Biased Transistor

Fig. 57.57

Suppose we want to apply an ac signal to the input emitter-base circuit of a properly-biased transistor shown in Fig. 57.58. If we apply the a.c. source directly across the $E B J$ as shown in Fig. 57.58 (a), it will upset the d.c. bias. It should be kept in mind that most ac signal sources are nearly a short to dc. Hence, nearly whole of I_{B} would pass through a.c. source rather than the base thereby spoiling the transistor bias.

In order to connect the ac source and at the same time not upset the d.c. bias, the ac source is connected via a coupling capacitor C as shown in Fig. 57.58 (b). This capacitor acts as an 'open' for dc but almost a short for ac source provided it is of sufficiently large capacitance.

Fig. 57.58

57.36. Transistor AC/DC Analysis

In Fig. 57.59 is shown a $C E$ amplifier circuit having an ac signal voltage $v_{b e}{ }^{*}$ applied across its E / B junction. This voltage will be added to the dc voltage $V_{B E}$ as if the two were connected in series. The resultant voltage is shown in Fig. $57.59(b)$ which shows ac voltage riding the d.c. level. The variations in the resultant output voltage $V_{C E}$ [Fig. 57.59 (b)] can be expressed in terms of the increase/decrease notation. It will be assumed that $V_{B E}$ is such as to bias $V_{C E}$ at $V_{C C}$ when no a.c. signal is applied.
(i) First Quarter Cycle

In the first quarter-cycle of the input signal, both $V_{B E}$ and $V_{B E}$ increase thereby giving rise to the following sequence of changes :

$$
V_{\mathrm{BE}} \quad \uparrow, i_{B} \quad \uparrow, \quad i_{C} \quad \uparrow, \quad i_{C} R_{L} \uparrow V_{C E} \downarrow
$$

Hence, output voltage decreases as shown in Fig. 57.59 (c)
(ii) Second Quarter Cycle

Here, $V_{b c}$ as well as $V_{B E}$ decrease. Hence,
$-— —--\underline{V_{B E} \downarrow,}-\underline{i_{B} \downarrow},-\underline{i_{C} \downarrow,} \underline{i_{C} \mathrm{R}_{\mathrm{L}} \downarrow,} \underline{V_{C E} \downarrow}$

* Normally, we will use the notation v_{i} or cin or c_{i} while discussing amplifiers.

Fig. 57.59
Again, $V_{\text {CE }}$ does the opposite of $V_{B E}$.

Same changes will happen in third quarter cycle as happened in the first quarter-cycle and so on. It is seen from Fig. 57.60 (c) that output ac voltage is 180° out of phase with the input voltage.

Example 57.28. Calculate the value of $V_{C E}$ in the circuit of Fig. 57.60 (a) if a.c. signal voltage is sinusoidal with a peak value of 0.01 V. Take voltage gain A_{v} of the circuit as 100 and $\beta=100$. Depict the waveform of the output voltage separately.

Solution. $\quad I_{B}=\frac{V_{C C}}{R_{B}}=\frac{20}{200}=0.1 \mathrm{~A}$

$$
I_{C}=\beta I_{B}=100 \times 0.1=10 \mathrm{~A}
$$

Fig. 57.61

Fig. 57.60

Obviously, the transistor has been biased at saturation as shown in Fig. 57.61 (b).
The addition of $v_{C E}$ and $v_{C E}$, is shown graphically in Fig. 57.61 (b). During the positive halfcycle of the signal, the transistor comes out of saturation and lets pass the half-cycle. However, during the negative half-cycle of input signal, transistor is further driven into saturation. Since it is already biased at $V_{C C}$'s most negative limit (0 volt), it cannot further go negative. Hence, the negative half-cycle of the signal is lost in saturation.

Tutorial Problems No. 57.1

1. A $C B$-connected transistor has $\alpha=0.96$ and $I_{E}=2 \mathrm{~mA}$. Find its I_{C} and I_{B}. $\quad[1.92 \mathbf{m A}, 80 \mu \mathrm{~A}]$
2. A $C B$-connected transistor has $I_{B}=20 \mu \mathrm{~A}$ and $I_{E}=2 \mathrm{~mA}$. Compute the value of α and I_{C}.
[0.99, 1.98 mA$]$
3. A $C E$-connected transistor has $\alpha=100$ and $I_{B}=50 \mu \mathrm{~A}$. Compute the values of α, I_{C} and I_{E}.
4. The following quantities are measured in a $C E$ transistor : $I_{C}=5 \mathrm{~mA} ; I_{B}=100 \mu \mathrm{~A}$. Determine β and I_{E}.
[0.98; 50; 51 mA]
5. A transistor has $\alpha=0.98, I_{C B O}=5 \mu \mathrm{~A}$ and $I_{B}=100 \mu \mathrm{~A}$. Find the values of I_{C} and I_{E}.
[5.15 mA ; $\mathbf{5 . 2 5} \mathbf{~ m A}$]
6. Following measurements are made in a transistor ; $I_{C}=5.202 \mathrm{~mA}, I_{B}=50 \mathrm{~mA}, I_{C B O}=2 \mathrm{~mA}$. Compute the values of α, β and I_{E}.
$[0.99 ; 100 ; 5.252 \mathrm{~mA}]$
7. Following measurements were made in a certain transistor :
$I_{C}=5.202 \mathrm{~mA} ; I_{B}=50 \mathrm{~mA} ; I_{C B O}=2 \mathrm{~mA}$.
Determine $(i) \alpha, \beta$ and $I_{E}(i i)$ new value of I_{B} required to make $I_{C}=10 \mathrm{~mA}$.
[(i) 0.99 ; $100 ; 5.252 \mathrm{~mA}$ (ii) 97.98 A$]$
8. For the $C B$ circuit of Fig. 57.62, find the value of $V_{C B}$. Neglect junction voltage $V_{B E}$. [5 V]
9. In the $C B$ circuit of Fig. 57.63, what value of R_{E} causes $V_{B C}=10 \mathrm{~V}$? Neglect $V_{E B}$. \quad [5 K]
10. For the $C E$ circuit of Fig. 57.64, calculate the values of I_{B}, I_{C}, I_{E} and $V_{C E}$. Take $\beta=50$ and neglect $V_{B E}$.
[$100 \mu \mathrm{~A}, 5 \mathrm{~mA}, 5.1 \mathrm{~mA}, 7.5 \mathrm{~V}$]
11. In the circuit of Fig. 57.65, calculate I_{B}, I_{C}, I_{E} and $V_{C E}$. Take transistor $\beta=50$ and neglect $V_{B E}$.
[100 $\mu \mathrm{A}, 5 \mathrm{~mA}, 5.1 \mathrm{~mA}, 5 \mathrm{~V}]$

Fig. 57.62
Fig. 57.63
12. In the $C C$ circuit of Fig. 57.66, compute the values of I_{E}, I_{B}, I_{C} and $V_{C E}$. Neglect $V_{B E}$.
[$0.25 \mathrm{~mA}, 2.48 \mu \mathrm{~A}, 0.248 \mathrm{~mA}, 5 \mathrm{~V}$]
13. In the $C C$ circuit of Fig. 57.67, find IE, I_{B}, I_{C} and $V_{C E}$. Neglect $V_{B E}$.
[$0.25 \mathrm{~mA}, 2.48 \mu \mathrm{~A}, 0.248 \mathrm{~mA}, 5 \mathrm{~V}]$
14. In the circuit of Fig. 57.68, find the drop across R_{L}. The transistor $\beta=100$.

Fig. 57.66

Fig. 57.67

Fig. 57.68

Fig. 57.69
15. Find the value of $V_{C E}$ for the universal stabilization circuit of Fig. 57.69.
16. (i) The reverse saturation current for the Ge transistor in Fig. 57.70 is $2 \mu \mathrm{~A}$ at room temperature $\left(25^{\circ} \mathrm{C}\right)$ and increases by a factor of 2 for each temperature increase of $10^{\circ} \mathrm{C}$. Bias voltage $\mathrm{V}_{\mathrm{BB}}=5 \mathrm{~V}$. Find the maximum allowable value for R_{B} if the transistor is to remain cutoff at a temperature of $75^{\circ} \mathrm{C}$.

Fig. 57.70
(ii) If $\mathrm{V}_{\mathrm{BB}}=1.0 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{B}}=50 \mathrm{k}$-ohm, how high may the temperature increase before the transistor comes out of cut-off (Electronic Devices and Circuits Nagpur University Summer, 2004)
17. Calculate the exact value of emitter current and $V_{C E}$ in the circuit shown in Fig. 57.71 Assume transistor to be silicon and $\beta=100$.
(Electronic Devices of Circuits, Nagpur University Summer, 2004)

Fig. 57.71

OBJECTIVE TESTS - 57

1. The emitter of a transistor is generally doped the heaviest because it
(a) has to dissipate maximum power
(b) has to supply the charge carriers
(c) is the first region of the transistor
(d) must possess low resistance.
2. For current working of an NPN bipolar junction transistor, the different electrodes should have the following polarities with respect to emitter.
(a) collector +ve , base -ve
(b) collector -ve , base +ve
(c) collector -ve , base -ve
(d) collector +ve , base +ve
3. Select the CORRECT alternative.

In a bipolar transistor
(a) emitter region is of low/high resistivity matterial which is lightly/ heavily-doped.
(b) collector region is of lower/higher conductivity than emitter region
(c) base region is of high/low resistivity material which is only lightly/ heavily doped.
4. In a properly-biased $N P N$ transistor, most of the electrons from the emitter
(a) recombine with holes in the base
(b) recombine in the emitter itself
(c) pass through the base to the collector
(d) are stopped by the junction barrier.
5. The following relationships between α and β are correct EXCEPT
(a) $\beta=\frac{\alpha}{1-\alpha}$
(b) $\alpha=\frac{\beta}{1-\beta}$
(c) $\alpha=\frac{\beta}{1+\beta}$
(d) $1-\alpha=\frac{1}{1+\beta}$
6. The value of total collector current in a $C B$ circuit is
(a) $I_{\mathrm{C}}=\alpha I_{E}$
(b) $I_{\mathrm{C}}=\alpha I_{E}+I_{C O}$
(c) $I_{\mathrm{C}}=\alpha I_{E}-I_{C O}$
(d) $I_{\mathrm{C}}=\alpha I_{E}$.
7. In a junction transistor, the collector cut off current $\mathrm{I}_{\mathrm{CBO}}$ reduces considerably by doping the
(a) emitter with high level of impurity
(b) emitter with low level of impurity
(c) collector with high level of impurity
(d) collector with low level of impurity
8. In a transistor amplifier, the reverse saturation current I_{CO}
(a) doubles for every $10^{\circ} \mathrm{C}$ rise in temperature
(b) doubles for every $1^{\circ} \mathrm{C}$ rise in temperature
(c) increases linearly with the temperature
(d) doubles for every $5^{\circ} \mathrm{C}$ rise in temperature
9. In the case of a bipolar transistor, α is
(a) positive and >1
(b) positive and <1
(c) negative and >1
(d) negative and <1.
10. The $E B J$ of a given transistor is forward- biased and its $C B J$ reverse-biased. If the base current is increased, then its
(a) I_{C} will decrease
(b) $V_{C E}$ will increase
(c) I_{C} will increase
(d) $V_{C C}$ will increase.
11. The collector characteristics of a $C E$ - connected transistor may be used to find its
(a) input resistance
(b) base current
(c) output resistance
(d) voltage gain.
12. Which of the following approximations is often used in electronic circuits ?
(a) $I_{C} \cong I_{E}$
(b) $I_{B} \cong I_{C}$
(c) $I_{B} \cong I_{E}$
(d) $I_{E} \cong I_{B}+I_{C}$
13. When a transistor is fully switched ON , it is said to be
(a) shorted
(b) saturated
(c) open
(d) cut-off
14. If a change in base current does not change the collector current, the transistor amplifier is said to be
(a) saturated
(b) cut-off
(c) critical
(d) complemented.
15. When an $N P N$ transistor is saturated, its $V_{C E}$
(a) is zero and I_{C} is zero
(b) is low and I_{C} is high
(c) equals $V_{C C}$ and I_{C} is zero
(d) equals $V_{C C}$ and I_{C} is high.
16. When an $N P N$ transistor is cut-off, its $V_{C C}$
(a) equals $V_{C C}$ and I_{C} is high
(b) equals $V_{C C}$ and I_{C} is zero
(c) is low and I_{C} is high
(d) is high and I_{C} is low.
17. If, in a bipolar junction transistor, $I_{B}=100 \mu \mathrm{~A}$ and $I_{C}=10 \mathrm{~mA}$, in what range does the value of its beta lie ?
(a) 0.1 to 1.0
(b) 1.01 to 10
(c) 10.1 to 100
(d) 100.1 to 1000 .
18. In a $B J T$, largest current flow occurs
(a) in the emitter
(b) in the collector
(c) in the base
(d) through $C B$ junction.
19. In a properly-connected $B J T$, an increase in base current causes increase in
(a) I_{C} only
(b) I_{E} only
(c) both I_{C} and I_{E}
(d) leakage current.
20. When a $B J T$ operates in cut-off
(a) $V_{C E}=0$
(b) $V_{C E}=V_{c c}$
(c) $V_{C E}$ has negative value
(d) I_{C} is maximum.
21. When a $B J T$ is in saturation
(a) $I_{C}=0$
(b) I_{B} controls I_{C}
(c) $V_{C E}=0$
(d) $V_{C E}$ has positive value.
22. The best approximation for V_{C} in the circuit shown in Fig. 54.72 will be (assume β to be high)
(a) 4 V
(b) 6.8 V
(c) 8.7 V
(d) 10.7 V

Fig. 57.72
23. Assume $=0.7 \mathrm{~V}$ and $\beta=50$ for the transistor in the circuit shown in Fig. 57.73. For $=2 \mathrm{~V}$, the value of R_{B} is

Fig. 57.73
(a) 200Ω
(b) 242Ω
(c) 283Ω
(d) 300Ω
24. In the circuit shown in Fig. 57.74, if $R_{L}=R_{C}=$ $\mathrm{K} \Omega$, then the value of V_{0} will be

Fig. 57.74
(a) 4.55 V
(b) 2.5 V
(c) 1 V
(d) zero
25. A transistor is operated as a non-saturated switch to eliminate
(a) storage time
(b) turn-off time
(c) turn-on time
(d) delay time
26. Early-effect in BJT refers to
(a) avalanche break down
(b) thermal break down
(c) base narrowing
(d) zener break-down
(UPSC Engg. Services 2002)
(Hint. Early effect also called base-width modulation) is the variation of effective base width by the collector voltage)
27. A bipolar junction transistor (BJT) is used as power control switch by biasing it in the cut-off region (OFF state) or in the saturation region (ON state). In the ON state, for the BJT.
(a) both the base-emitter junction and basecollector junctions are reverse biased
(b) the base-emitter is reverse biased, and the base-collector junction is forward biased
(c) the base-emitter junction is forward biased, and the base-collector junction is reverse biased
(d) both the base-emitter and base-collector junctions are forward biased.

ANSWERS

1. (a)	2. (d)	3. (a) low, heavily (b) lower (c) high, lightly					. (c)	5. (b)	6. (b)	7. (d)
8. (a)	9. (d)	10. (c)	11. (c)	12. (a)	13. (b)	14. (a)	15. (b)	16. (b)	17. (b)	18. (a)
19. (c)	20. (b)	21. (c)	22. (d)	23. (d)	24. (b)	25. (a)	26. (c)	27. (d)		

[^0]: * In a transistor, for normal operation, collector and base have the same polarity with respect to the emitter
 (Art. 57.3)

